精英家教网 > 初中数学 > 题目详情
19.计算$\frac{x}{x+1}+\frac{2x}{{x}^{2}-1}$的结果为$\frac{x}{x-1}$.

分析 原式通分并利用同分母分式的加法法则计算,即可得到结果.

解答 解:原式=$\frac{x(x-1)+2x}{(x+1)(x-1)}$=$\frac{x(x+1)}{(x+1)(x-1)}$=$\frac{x}{x-1}$,
故答案为:$\frac{x}{x-1}$

点评 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.将一张矩形纸片按如图方式折叠,设O点是矩形边上一点,将矩形的一角沿OA翻折使OB与OF重合,再将其邻角沿0D翻折,使OC与OE重合,且O、E、F在同一直线上.求OA与∠BOF、OD与∠EOC的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知在△ABC中,∠A和∠B都是锐角,sinA=$\frac{3}{5}$,tanB=3,AB=10,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.我们定义一种新运算,规定:图表示a-b+c,图形表示-x+y-z,则+的值为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.计算$\frac{{x}^{2}-2xy+{y}^{2}}{{x}^{2}y+x{y}^{2}}$$•\frac{xy}{x-y}$的结果为(  )
A.$\frac{x-y}{x+y}$B.$\frac{x+y}{x-y}$C.$\frac{(x-y)^{2}}{x+y}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在直角坐标系中,抛物线y=$\frac{1}{3}$x2-mx+n与x轴交于A,B两点,与y轴交于点C,且对称轴是直线x=1.直线y=x-1与抛物线y=$\frac{1}{3}$x2-mx+n相交于C,D两点.点P是抛物线上的动点.
(1)求抛物线的解析式及A,B两点的坐标;
(2)在抛物线的CBD段上是否存在点P,使△CDP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点P在抛物线的CB段上时,设四边形APBD的面积为S.当S取何值时,满足条件的点P只有一个?当S取何值时,满足条件的点P有两个?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在Rt△ABC中,CD是斜边AB上的高,若AD:BD=1:3,求△ACD与△ABC的周长之比.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,矩形DEFG内接于△ABC,AH⊥BC,DG与AH相交于点K,BC=48,高AH=16.
(1)设AK的长为x,矩形DEFG的周长为C,面积为S,分别求出C=f(x)与S=g(x)的解析式;
(2)内接矩形DEFG的长和宽是否可能都大于10?如果可能,那么请说明如何作出这样的矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(x3+xy2)-2(x3y-2xy2

查看答案和解析>>

同步练习册答案