【题目】抛物线y=x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.
(1)求该抛物线的解析式;
(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1).(2)点A/的坐标为(﹣3,4).点A/在该抛物线上.(3)点P运动到时,四边形PACM是平行四边形.
【解析】试题分析:(1)利用待定系数法求出抛物线的解析式;
(2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标;
(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.
试题解析:(1)∵与x轴交于A(5,0)、B(-1,0)两点,
∴,
解得
∴抛物线的解析式为.
(2) 过点作⊥x轴于E,AA/与OC交于点D,
∵点C在直线y=2x上,
∴C(5,10)
∵点A和关于直线y=2x对称,∴OC⊥,=AD.
∵OA=5,AC=10,∴.
∵,
∴.
∴.
在和中,
∵∠+∠=90°,∠ACD+∠=90°,
∴∠=∠ACD.
又∵∠=∠OAC=90°,
∴∽.
∴即.
∴=4,AE=8.
∴OE=AE-OA=3.
∴点A/的坐标为(﹣3,4).
当x=﹣3时, .
所以,点A/在该抛物线上.
(3)存在.
理由:设直线的解析式为y=kx+b,
则,
解得
∴直线的解析式为.
设点P的坐标为,则点M为.
∵PM∥AC,
∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,
∴.
解得(不合题意,舍去)当x=2时,.
∴当点P运动到时,四边形PACM是平行四边形.
科目:初中数学 来源: 题型:
【题目】如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.
(1)表中第8行的最后一个数是 , 它是自然数的平方,第8行共有个数;
(2)用含n的代数式表示:第n行的第一个数是 , 最后一个数是 , 第n行共有个数;
(3)求第n行各数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°AB=8cm,cos∠ABC=,点D在边AC上,且CD=cm,动点P从点A开始沿边AB向点B以1cm/s的速度移动,当点P到达B点即停止运动.设运动时间为t(s).解答下列问题:
(1)M、N分别是DP、BP的中点,连接MN.
①分别求BC、MN的值;
②求在点P从点A匀速运动到点B的过程中线段MN所扫过区域的面积;
(2)在点P运动过程中,是否存在某一时刻t,使BD平分∠CDP?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°. 因城市规划的需要,将在A、B两地之间修建一条笔直的公路.
(1)求改直后的公路AB的长;
(2)问公路改直后该段路程比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校初三年级开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元.
(1)求两人学习桌和三人学习桌的单价;
(2)学校欲投入资金不超过6000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W 元,求出W与x的函数关系式;求出所有的购买方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com