分析 根据直径所对的圆周角等于90°,得∠ACB=90°,再由CD⊥AB.易得∠ACD=∠B,又由cos∠ACD=$\frac{3}{5}$,得出tanB,即可求得答案.
解答 解:∵AB为直径,
∴∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠BCD+∠B=90°,
∴∠B=∠ACD,
∵cos∠ACD=$\frac{3}{5}$,
∴cos∠B=$\frac{3}{5}$,
∴tan∠B=$\frac{AC}{BC}$,
∵BC=4,
∴tan∠B=$\frac{4}{3}$,
∴$\frac{AC}{4}$=$\frac{4}{3}$
∴AC=$\frac{16}{3}$.
点评 本题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | b+c>0 | B. | a+b+c<0 | C. | a+c<b+c | D. | |a+b|>0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com