【题目】永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地.“永定土楼”模型深受游客喜爱.图中折线(AB∥CD∥x轴)反映了某种规格土楼模型的单价y(元)与购买数量x(个)之间的函数关系.
(1)求当10≤x≤20时,y与x的函数关系式;
(2)已知某旅游团购买该种规格的土楼模型总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)
【答案】(1)当10≤x≤20时,y=﹣5x+250;(2)旅游团共购买这种土楼模型15个
【解析】分析:(1)设出一次函数解析式,把B、C两点的坐标代入可得所求函数关系式;
(2)所用金额既不是200的倍数,也不是150的倍数,可得模型的单价在150和200之间,根据总价等于2625得到一元二次方程,求解即可.
详解:(1)当10≤x≤20时,设y=kx+b(k≠0)
依题意,得
解得
∴当10≤x≤20时,y=﹣5x+250;
(2)∵10×200<2625<20×150
∴10<x<20(8分)
依题意,得xy=x(﹣5x+250)=2625
即x2﹣50x+525=0
解得x1=15,x2=35(舍去)
∴只取x=15.(12分)
答:该旅游团共购买这种土楼模型15个.
科目:初中数学 来源: 题型:
【题目】计算:
(1)23﹣17﹣(﹣7)+(﹣16)
(2)
(3)﹣22÷(﹣4)3+|0.8﹣1|×(2)2
(4)4xy+(3y2﹣2x2)﹣(5xy﹣2x2)﹣4y2
(5)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣,y=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知同一平面内∠AOB=90°,∠AOC=60°.
(1)问题发现:∠BOD的余角是 ,∠BOC的度数是 ;
(2)拓展探究:若OD平分∠BOC,OE平分∠AOC,则∠DOE的度数是 ;
(3)类比延伸:在(2)条件下,如果将题目中的∠AOB=90°改为∠AOB=2∠β;∠AOC=60°改为∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE吗?若能,请你写出求解过程:若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某港口P位于东西方向的海岸线上,A、B两艘轮船同时从港口P出发,各自沿一固定方向航行,A轮船每小时航行12海里,B轮船每小时航行16海里.它们离开港口一个半小时后分别位于点R、Q处,且相距30海里.已知B轮船沿北偏东60°方向航行.
(1)A轮船沿哪个方向航行?请说明理由;
(2)请求出此时A轮船到海岸线的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点A表示数a,点C表示数c,且.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB.
(1)求AC的值;
(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值.
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 yax 2(a0) 的图象与反比例函数 y(k0) 的图象交于 A、B两点,且与x轴、y轴分别交于点C、D.已知 tan∠AOC=,AO=.
(1)求这个一次函数和反比例函数的解析式;
(2) 若点 F 是点D 关于 x 轴的对称点,求△ABF 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,以△ABC的边AB为直径的⊙O角边BC于点E,过点E作DE⊥AC交AC于D.
(1)求证:DE是⊙O的切线;
(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为: .
②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com