精英家教网 > 初中数学 > 题目详情
在△ABC中,AD平分角∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=40°,∠ACB=80°,则∠E=
 

(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.并证明.
考点:三角形内角和定理,三角形的外角性质
专题:
分析:(1)首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;
(2)根据第(1)小题的思路即可推导这些角之间的关系.
解答: 解:(1)如图,

∵∠B=40°,∠ACB=80°,
∴∠BAC=60°,
∵AD平分∠BAC,
∴∠DAC=30°,
∴∠ADC=70°,
∴∠E=20°;

(2)∠E=
1
2
(∠ACB-∠B).
证明:设∠B=n°,∠ACB=m°,
∵AD平分∠BAC,
∴∠1=∠2=
1
2
∠BAC,
∵∠B+∠ACB+∠BAC=180°,
∵∠B=n°,∠ACB=m°,
∴∠CAB=(180-n-m)°,
∴∠BAD=
1
2
(180-n-m)°,
∴∠3=∠B+∠1=n°+
1
2
(180-n-m)°=90°+
1
2
n°-
1
2
m°,
∵PE⊥AD,
∴∠DPE=90°,
∴∠E=90°-(90°+
1
2
n°-
1
2
m°)=
1
2
(m-n)°=
1
2
(∠ACB-∠B).
点评:此题考查三角形的内角和定理以及角平分线的定义.灵活利用三角形内角和180°解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,tan∠ADC=
4
3

(1)DC的长;
(2)sinB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列选项中正确表示数轴的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b互为相反数,c,d互为倒数,m的绝对值是3.求m2-(a+b+ab)m-
2
3
mab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是等边△ABC的角平分线,DE⊥AB,垂足为点E,线段BC的垂直平分线交BD于点P,垂足为F,若PF=2,则DE的长为(  )
A、2
B、2
3
C、3
D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D,若∠D=20°,则∠A=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

三角形的两个角分别是45°和56°,则第三个角的平分线与它的对边上的高之间的夹角是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(x+3)(x-3)(x2+9)

查看答案和解析>>

科目:初中数学 来源: 题型:

写出二元一次方程2x-y=4的一个整数解
 

查看答案和解析>>

同步练习册答案