【题目】已知二次函数L与y轴交于点C(0,3),且过点(1,0),(3,0).
(1)求二次函数L的解析式及顶点H的坐标
(2)已知x轴上的某点M(t,0);若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;试说明四边形CHC′H′为平行四边形.
(3)若平行四边形的边与某一条对角线互相垂直时,称这种平行四边形为“和谐四边形”;在(2)的条件下,当平行四边形CHC′H′为“和谐四边形”时,求t的值.
【答案】(1) y=x2﹣4x+3,(2,﹣1);(2)见解析;(3) t=或4或﹣6
【解析】
(1)利用待定系数法可求解析式,由配方法可求顶点坐标;
(2)由中心对称的性质可得CM=C'M,HM=H'M,可得结论;
(3)分四种情况讨论,由两点距离公式和一次函数的性质可求解.
(1)设二次函数L的解析式为:y=ax2+bx+c(a≠0)
由题意可得:
解得:
∴二次函数L的解析式为:y=x2﹣4x+3,
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴顶点H的坐标(2,﹣1)
故答案为:y=x2﹣4x+3,(2,﹣1)
(2)
∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;
∴CM=C'M,HM=H'M,
∴四边形CHC′H′为平行四边形;
(3)∵点C(0,3),点H(2,﹣1)
∴直线CH解析式为:y=﹣2x+3;
若CC'⊥CH时,则CC'解析式为:
当y=0时,
∴t=﹣6;
若HH'⊥CH时,则HH'解析式为:
当y=0时,
∴t=4
∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;
∴点C'(2t,﹣3),点H'(2t﹣2,1)
若CH'⊥HH',则H'C2+H'H2=CH2,
∴(2t﹣2﹣0)2+(3﹣1)2+(2t﹣2﹣2)2+(1+1)2=(0﹣2)2+(3+1)2,
∴t=
若CC'⊥CH',则H'C2+C'C2=C'H'2,
∴(2t﹣2﹣0)2+(3﹣1)2+(2t﹣0)2+(3+3)2=(0﹣2)2+(3+1)2,
∴△<0,方程无解;
综上所述:t=或4或﹣6.
故答案为:t=或4或﹣6.
科目:初中数学 来源: 题型:
【题目】如图,在5×5的正方形网格,每个小正方形的边长都为1,线段AB的端点落在格点上,要求画一个四边形,所作的四边形为中心对称图形,同时满足下列要求:
(1)在图1中画出以AB为一边的四边形;
(2)分别在图2和图3中各画出一个以AB为一条对角线的四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=-x2+(n-1)x+3的图像与y轴交于点A,与x轴的负半轴交于点B(-2,0)
(1)求二次函数的解析式;
(2)点P是这个二次函数图像在第二象限内的一线,过点P作y轴的垂线与线段AB交于点C,求线段PC长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数
(个)与甲加工时间
之间的函数图象为折线
,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当时,求
与
之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】5月13日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y与x的函数图象如图所示,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.
(1)求抛物线的解析式;
(2)若点D的坐标为(-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.
(1)填空:AC=_____;∠F=______.
(2)当BD=DE时,证明:△ABC≌△EAF.
(3)△EAF面积的最小值是____.
(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,AD=,点M为AB的中点,点N为AD边上的一动点,将△AMN沿MN折叠,点A落在点P处,当点P在矩形ABCD的对角线上时,AN的长度为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com