【题目】如图,在△ABC中,∠BAC=90°,∠B=60°,AB=2.AD⊥BC于D.E为边BC上的一个(不与B、C重合)点,且AE⊥EF于E,∠EAF=∠B,AF相交于点F.
(1)填空:AC=_____;∠F=______.
(2)当BD=DE时,证明:△ABC≌△EAF.
(3)△EAF面积的最小值是____.
(4)当△EAF的内心在△ABC的外部时,直接写出AE的范围_____.
【答案】(1)2,30°;(2)见解析;(3);(4).
【解析】
(1)利用∠B的正切值可求出AC的长;根据直角三角形两锐角互余的关系即可求出∠F的度数;
(2)根据垂直平分线的性质可得AB=AE,利用ASA即可证明△ABC≌△EAF;
(3)由∠EAF=60°,∠AEF=90°可得EF=AE,进而可得AE⊥BC时△EAF面积最小,利用∠B的正弦可求出AE的值,进而可求出△EAF的面积;
(4)如图,当△EAF的内心在AC边上时,设内心为N,根据内心的定义可知∠EAC=30°,可求出∠BAE=60°,可证明△BAE是等边三角形,可求出AE=AB=2,由(1)可知AC=2,即可得出AE的取值范围.
(1)∵∠BAC=90°,∠B=60°,AB=2,tanB=,
∴AC=ABtanB=2tan60°=2;
∵AE⊥EF,
∴∠AEF=90°,
∵∠EAF=∠B=60°,
∴∠F=90°﹣∠EAF=90°﹣60°=30°.
故答案为:2,30°;
(2)当BD=DE时,
∵AD⊥BC于D,
∴AB=AE,
∵∠AEF=90°,∠BAC=90°,
∴∠AEF=∠BAC,
在△ABC和△EAF中,,
∴△ABC≌△EAF(ASA);
(3)∵∠AEF=90°,∠EAF=60°,tan∠EAF=,
∴EF=AEtan∠EAF=AEtan60°=AE,
∴S△EAF=AEEF=AE×AE=AE2,
当AE⊥BC时,AE最短,S△EAF最小,此时∠AEB=90°,sinB=,
∴AE=ABsinB=2sin60°=2×=,
S△EAF=AE2=×3=,
∴△EAF面积的最小值是,
故答案为:;
(4)设△EAF的内心为N,
∵∠AEF=45°,∠B=30°,E为BC上的一点,不与B、C重合,
∴EN与AC一定有交点,
如图:当△EAF内心恰好落在AC上时,连接EN,
∵N是△EAF的内心,
∴AN平分∠EAF,EN平分∠AEF,
∴∠EAC=∠AEF=×60°=30°,
∵∠BAC=90°,
∴∠BAE=∠BAC﹣∠EAC=90°﹣30°=60°,
∵∠B=60°,
∴△ABE是等边三角形,
∴AE=AB=2,
∵E为BC上的一点,不与B、C重合,由(1)可知AC=2,
∴当△EAF的内心在△ABC的外部时,.
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知二次函数L与y轴交于点C(0,3),且过点(1,0),(3,0).
(1)求二次函数L的解析式及顶点H的坐标
(2)已知x轴上的某点M(t,0);若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;试说明四边形CHC′H′为平行四边形.
(3)若平行四边形的边与某一条对角线互相垂直时,称这种平行四边形为“和谐四边形”;在(2)的条件下,当平行四边形CHC′H′为“和谐四边形”时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于、B两点,与y轴交点C的坐标为,为抛物线顶点,连结AD,点M为线段AD上动点(不含端点),BM与y轴交于点N.
(1)求抛物线解析式;
(2)是否存在点M使得与相似,若存在请求出点M的坐标,若不存在,请说明理由;
(3)求当BM将四边形ABCM分为面积相等的两部分时ON的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2>4ac,②abc<0,③2a+b﹣c>0,④a+b+c<0.其中正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点,与轴交于点,抛物线经过两点且与x轴的负半轴交于点.
求该抛物线的解析式;
若点为直线上方抛物线上的一个动点,当时,求点的坐标;
已知分别是直线和抛物线上的动点,当为顶点的四边形是平行四边形时,直接写出所有符合条件的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】延迟开学期间,学校为了全面分析学生的网课学习情况,进行了一次抽样调查(把学习情况分为三个层次,A:能主动完成老师布置的作业并合理安排课外时间自主学习;B:只完成老师布置的作业;C:不完成老师的作业),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了_______名学生;
(2)将条形图补充完整;
(3)求出图2中C所占的圆心角的度数;
(4)如果学校开学后对A层次的学生奖励一次看电影,根据抽样调查结果,请你估计该校1500名学生中大约有多少名学生能获得奖励?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请补全条形统计图;
(2)求出图1中表示文学类书籍的扇形圆心角度数;
(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com