精英家教网 > 初中数学 > 题目详情
如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是的外角,则=                   
180°

试题分析:根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.
试题解析:如图:

∵AB∥CD,
∴∠B+∠C=180°,
∴∠4+∠5=180°,
根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3=360°-180°=180°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.
(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;
(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;
(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,AC=BD,且AC⊥BD, E、F、G、H分别是AB、BC、CD、DA的中点.则四边形EFGH是怎样的四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如右上图,已知矩形ABCD中,P、R分别是BC、DC上的点,E、F分别的是PA、PR的中点,如果DR=3,AD = 4,则EF长为        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,,延长BA至D,使,点E、F分别是边BC、AC的中点.

(1)判断四边形DBEF的形状并证明;
(2)过点A作AG⊥BC交DF于G,求证:AG=DG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

七边形的内角和是_______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图所示,△ABC中,E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥A B,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是                     ,试证明:这个多边形是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在四边形ABCD中,若有下列四个条件:①AB//CD;②AD=BC;③∠A=∠C;④AB=CD,现以其中的两个条件为一组,能判定四边形ABCD是平行四边形的条件有    (    )
A.3组B.4组C.5组D.6组

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为 (    )
A.75°B.65°C.55°D.50°

查看答案和解析>>

同步练习册答案