【题目】如图,在平行四边形ABCD中,以点A为圆心,一定长为半径作圆弧,分别交AD、AB于点E、F;再分别以点E、F为圆心,大于 EF的长为半径作弧,两弧交于点G;作射线AG,交边CD于点H.若AB=6,AD=4,则四边形ABCH的周长与三角形ADH的周长之差为( )
A.4
B.5
C.6
D.7
【答案】A
【解析】解:根据作图的方法可得AG平分∠DAB,
∵AG平分∠DAB,
∴∠DAH=∠BAH,
∵CD∥AB,
∴∠DHA=∠BAH,
∴∠DAH=∠DHA,
∴AD=DH,
∵AB=CD=6,AD=BC=4,
∴CH=6﹣4=2,
∴四边形ABCH的周长与三角形ADH的周长之差=(AB+BC+CH+AH)﹣(AD+AH+DH)=AB+CH﹣DH=6+2﹣4=4,
故选A.
【考点精析】解答此题的关键在于理解角平分线的性质定理的相关知识,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上,以及对平行四边形的性质的理解,了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A在y轴的左侧,点C在x轴的下方,且OA=OC=5.
(1)求抛物线对应的函数解析式;
(2)点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;
(3)在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A、B在数轴上分别表示实数、,A、B两点之间的距离记作AB.
当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB==.
当A、B两点都不在原点时:
(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB-OA====
(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB-OA====
(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA===
回答下列问题:
(1)综上所述,数轴上A、B两点之间的距离AB= .
(2)数轴上表示2和-4的两点A和B之间的距离AB= .
(3)数轴上表示和-2的两点A和B之间的距离AB= ,如果AB=2,则的值为 .
(4)若代数式有最小值,则最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)为倡导节约用电,某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.
(1)(4分)小张家2015年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元.问“基本电价”和“提高电价”分别为多少元/千瓦时?
(2)(3分)若4月份小张家预计用电130千瓦时,请预算小张家4月份应上缴的电费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自4月以来,我市推出了一项“共享单车”的便民举措,为人们的城市生活出行带来了方便.图(1)所示的是某款单车的实物图.图(2)是这辆单车的部分几何示意图,其中车支架BC的长为20cm,且∠CBA=75°,∠CAB=30°.求车架档AB的长.(参考数据:sin75°= ,cos75°= ,tan75°=2+ )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀. 为了解本次大赛的成绩,校团委随机抽取了甲、乙两组学生成绩作为样本进行统计,绘制了如下统计图表:
组别 | 平均数 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.8 | a | 3.76 | 90% | 30% |
乙组 | b | 7.5 | 1.96 | 80% | 20% |
(1)求出表中a,b的值;
(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面的表格判断,小英属于哪个组?
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组. 但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com