【题目】若△ABC的三边长分别为m﹣2,2m+1,8.
(1)试确定m的取值范围;
(2)若△ABC的三边均为整数,求△ABC的周长;
(3)若△ABC为等腰三角形,试确定另外两边的长.
【答案】(1)3<m<5;(2)△ABC的周长=19;(3)另外两边的长为和8.
【解析】
(1)根据三角形的三边关系,可得①(m-2)+(2m+1)>8,(2m+1)-(m-2)<8,解①②组成的不等式组可得;
(2)根据题意和m的取值,即可得出m=4,从而得出边的长,三边相加即可求得三角形的周长;
(3)分三种情况分别讨论即可求得m=,代入m-2,2m+1即可求得另外两边的长.
(1)根据三角形的三边关系得
,
解得3<m<5;
(2)∵△ABC的三边均为整数,
∴m=4,
∴△ABC的周长=m﹣2+2m+1+8=19;
(3)当m﹣2=2m+1时,
解得m=﹣3(不合题意,舍去),
当m﹣2=8时,
解得,m=10>5(不合题意,舍去),
当2m+1=8时,
解得,m=,
所以若△ABC为等腰三角形,m=,
则m﹣2=,2m+1=8,
所以,另外两边的长为和8.
科目:初中数学 来源: 题型:
【题目】已知如图1,在中,,,点是的中点,点是边上一点,直线垂直于直线于点,交于点.
(1)求证:.
(2)如图2,直线垂直于直线,垂足为点,交的延长线于点,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图①,已知:在△ABC中,∠BAC=90°AB=AC,直线l经过点A,BD⊥直线L,CE⊥直线L,垂足分别为点D、E.证明:①△ABD≌△CAE;②DE=BD+CE。
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的七边形ABCDEFG中,∠1、∠2、∠3、∠4 四个角的外角和为180°,∠5 的外角为60°,BP、DP 分别平分∠ABC、∠CDE,则∠BPD 的度数是( )
A. 130° B. 120° C. 110° D. 100°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.
(1)判断四边形ACGD的形状,并说明理由.
(2)求证:BE=CD,BE⊥CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,且AD=AB,∠EDF=60°,且∠EDF两边分别交边AB,AC于点E,F,求证:BE=AF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com