精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是等腰直角三角形,ACB=90°,分别以AB,AC为直角边向外作等腰直角ABD和等腰直角ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.

(1)判断四边形ACGD的形状,并说明理由.

(2)求证:BE=CD,BE⊥CD.

【答案】(1)四边形ACGD为平行四边形,理由见解析;(2)证明见解析.

【解析】

(1)利用等腰直角三角形的性质易得BD=2BC,因为GBD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45°AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;

(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.

(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,

∴AB=BC,

∵△ABD和△ACE均为等腰直角三角形,

∴BD===2BC,

∵GBD的中点,

∴BG=BD=BC,

∴△CBG为等腰直角三角形,

∴∠CGB=45°,

∵∠ADB=45°,

AD∥CG,

∵∠ABD=45°,∠ABC=45°

∴∠CBD=90°,

∵∠ACB=90°,

∴∠CBD+∠ACB=180°,

∴AC∥BD,

∴四边形ACGD为平行四边形;

(2)证明:∵∠EAB=∠EAC+∠CAB=90°+45°=135°,

∠CAD=∠DAB+∠BAC=90°+45°=135°,

∴∠EAB=∠CAD,

在△DAC与△BAE中,

∴△DAC≌△BAE,

∴BE=CD;

∵∠EAC=∠BCA=90°,EA=AC=BC,

∴四边形ABCE为平行四边形,

∴CE=AB=AD,

在△BCE与△CAD中,

∴△BCE≌△CAD,

∴∠CBE=∠ACD,

∵∠ACD+∠BCD=90°,

∴∠CBE+∠BCD=90°,

∴∠CFB=90°,

BE⊥CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:

1)汽车在前9分钟内的平均速度是多少?

2)汽车在中途停了多长时间?

316≤t≤30时,求St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:

(1)如果∠1=∠B,那么______________,根据是__________________________

(2)如果∠3=∠D,那么______________,根据是__________________________;

(3)如果要使BE∥DF,必须∠1=∠_______,根据是_________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-1,3)的对应点A′的坐标是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是
(2)若甲、乙均可在本层移动. ①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一快递小哥骑电动车需要在规定的时间把快递送到某地,若他以的速度行驶就会提前2分钟到达,如果他以的速度行驶就要迟到6分钟。

(1)快递小哥行驶的路程是多少千米;

(2)当快递小哥以的速度行驶10分钟后,因某段路拥堵耽误了3分钟,为了刚好在规定时间到达,快递小哥应以怎祥的速度行驶。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.

(1)求无风时飞机的飞行速度;

(2)求两城之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理过程,请填空.

解:∵OA⊥OB(已知)

所以_____=90°________

因为_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代换)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,n),以点B为直角顶点,点C在第二象限内,作等腰直角△ABC.则点C的坐标是_____(用字母n表示).

查看答案和解析>>

同步练习册答案