【题目】如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.
(1)求证:△ACD≌△EDC;
(2)请探究△BDE的形状,并说明理由.
【答案】(1)证明见解析(2)△BDE是等腰三角形
【解析】
试题分析:(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;
(2)由AC=BD,DE=AC,得出BD=DE即可.
试题解析:(1)∵四边形ABCD是矩形,
∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,
由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,
∴AD=EC,
在△ACD和△EDC中,,
∴△ACD≌△EDC(SAS);
(2)△BDE是等腰三角形;理由如下:
∵AC=BD,DE=AC,
∴BD=DE,
∴△BDE是等腰三角形.
科目:初中数学 来源: 题型:
【题目】5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为( )
A.4.4×108
B.4.4×109
C.4×109
D.44×108
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定:如果关于的一元二次方程有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:
①方程是倍根方程;
②若关于的方程是倍根方程,则a=±3;
③若关于x的方程是倍根方程,则抛物线与x轴的公共点的坐标是(2,0)和(4,0);
④若点(m,n)在反比例函数的图象上,则关于x的方程是倍根方程
上述结论中正确的有( )
A.①② B.③④ C.②③ D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).
(1)求证无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.
(1)求主桥AB的长度;
(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.
(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com