【题目】如图,抛物线 y =-x2+3x +4 与x轴负半轴相交于A点,正半轴相交于B点,与 y 轴相交于C 点.
(1)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线 BC 对称的点的坐标;
(2)在(1)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
【答案】(1)(0,1);(2)(,).
【解析】
(1)先求得点 C的坐标,判断出CD∥AB,求出CD=3,进而判断出点E在y轴上,进而求出CE=3,即可得出结论;
(2)先判断出∠CBD=∠PBF,进而判断出△BFP∽△BGD,再求出CG,DG,BG,进而得出,进而设出PF得出BF,OF,得出点P的坐标,代入抛物线解析式中,即可得出结论.
(1)将点(,)代入中,得:
,
解得:或3,
∵点在第一象限,
∴,
∴点D的坐标为(3,4);
令,则,
解得:,
令,则,
由题意得A(-1,0),B(4,0),C(0,4),
∴OC=OB=4,BC=,CD=3,
∵点C、点D的纵坐标相等,
∴CD∥AB,∠OCB=∠OBC=∠DCB=45°,
∴点D关于直线BC的对称点E在轴上.
根据对称的性质知:CD=CE=3 ,
∴,
∴点关于直线对称的点E的坐标为(0,1);
(2)作PF⊥AB于F,DG⊥BC于G,
由(1)知OB=OC=4,∠OBC=45°.
∵,
∴∠CBD=∠PBF.
∵CD=3,∠DCB=45°,
∴CG=DG=,
∵BC=,
∴BG=
∴.
设,则,.
∴,
∵P点在抛物线上,
∴
解得:或t=0(舍去).
∴点P的坐标为(,).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线.
(1)求的值和点的坐标;
(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;
(3)当时,若直线与直线和(2)反比例函数的图象分别交于点,,当间距离大于等于2时,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.
(1)求证:直线AB是⊙O的切线;
(2)若∠A=30°,AC=6,求⊙O的周长;
(3)在(2)的条件下,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC 纸板中, AB =AC=5 , BC = 2 ,P为AB上一点,过P沿直线剪下一个与△ABC 相似的小三角形纸板,恰有 3 种不同的剪法,那么BP长可以为( ).
A.3.6B.2.6C.1.6D.0.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在边BC上,∠CAD=∠B,点E在边AB上,联结CE交AD于点H,点F在CE上,且满足CFCE=CDBC.
(1)求证:△ACF∽△ECA;
(2)当CE平分∠ACB时,求证:=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学社团成员想利用所学的知识测量某广告牌的宽度图中线段MN的长,直线MN垂直于地面,垂足为点在地面A处测得点M的仰角为、点N的仰角为,在B处测得点M的仰角为,米,且A、B、P三点在一直线上请根据以上数据求广告牌的宽MN的长.
参考数据:,,,,,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论:
①ac<0;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的结论是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com