【题目】如图,在△ABC中,点D在边BC上,∠CAD=∠B,点E在边AB上,联结CE交AD于点H,点F在CE上,且满足CFCE=CDBC.
(1)求证:△ACF∽△ECA;
(2)当CE平分∠ACB时,求证:=.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据相似三角形的判定定理得到△ACD∽△BCA,求得=,得到AC2=CDBC,等量代换得到AC2=CFCE,于是得到结论;
(2)根据相似三角形的性质得到∠CAE=∠CDE,根据角平分线定义得到∠ACE=∠DCH,根据相似三角形的性质即可得到结论.
(1)∵∠ACD=∠BCA,∠CAD=∠B,
∴△ACD∽△BCA,
∴=,
∴AC2=CDBC,
∵CFCE=CDBC,
∴AC2=CFCE,
∴=,
∵∠ACF=∠ECA,
∴△ACF∽△ECA;
(2)∵△ACF∽△ECA,
∴∠CAE=∠CDE,
∵当CE平分∠ACB,
∴∠ACE=∠DCH,
∴△ACE∽△DCH,
∴=2=
∵AC2=CDBC,
∴=.
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.
如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?
在的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2, 其中结论正确的是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大王米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量.测量项目及结果如下表:
项目 | 内容 | |||
课题 | 测量郑州会展宾馆的高度 | |||
测量示意图 | 如图,在E点用测倾器DE测得楼顶B的仰角是α,前进一段距离到达C点用测倾器CF测得楼顶B的仰角是β,且点A、B、C、D、E、F均在同一竖直平面内 | |||
测量数据 | ∠α的度数 | ∠β的度数 | EC的长度 | 测倾器DE,CF的高度 |
40° | 45° | 53米 | 1.5米 | |
… | … |
请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)(参考数据:sin15°=,cos15°=,tan15°=)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD和四边形位似,位似比=2,四边形A′B′C′D′和四边形位似,位似比=1.四边形和四边形ABCD是位似图形吗?位似比是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上,BD平分∠ABC,DE⊥AB,AE=6,cos A=.求:
(1)DE,CD的长;(2)tan∠DBC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com