【题目】将一副三角板按如图摆放,其中△ABC为含有45度角的三角板,直线AD是等腰直角三角形ABC的对称轴,且将△ABC分成两个等腰直角三角形,DM、DN分别与边AB、AC交于E、F两点,有下列四个结论:①BD=AD=CD②△AED≌△CFD③BE+CF=EF④S四边形AEDF=AB2.其中正确结论是_____(填写正确序号)
【答案】①②④
【解析】
根据等腰直角三角形的性质可得AD=CD=BD,故①正确,∠CAD=∠B=45°,根据同角的余角相等求出∠CDF=∠ADE,然后利用“角边角”证明△ADE和△CDF全等,判断出②正确,根据全等三角形对应边相等可得DE=DF、BE=AF,求出AE=CF,根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出③错误;根据全等三角形的面积相等可得S△ADF=S△BDE,从而求出S四边形AEDF=S△ABD=AB2,判断出④正确.
∵∠B=45°,AB=AC,
∴△ABC是等腰直角三角形,
∵点D为BC中点,
∴AD=CD=BD,故①正确;
AD⊥BC,∠BAD=45°,
∴∠EAD=∠C,
∵∠MDN是直角,
∴∠ADF+∠ADE=90°,
∵∠CDF+∠ADF=∠ADC=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(ASA),故②正确;
∴DE=DF、BE=AF,
∴△DEF是等腰直角三角形,
∵AE=AB-BE,CF=AC-AF,
∵BE+CF=AF+AE
∴BE+CF>EF,故③错误;
∵△BDE≌△ADF,
∴S△ADF=S△BDE,
∴S四边形AEDF=S△ACD=AD2=AB2.故④正确.
故答案为:①②④.
科目:初中数学 来源: 题型:
【题目】小丽妈妈在网上做淘宝生意,专门销售女式鞋子,一次,小丽发现一个进货单上的一个信息是:A款鞋的进价比B款鞋进价多20元,花500元进A款鞋的数量和花400元进B款鞋的数量相同.
(1)问A、B款鞋的进价分别是多少元?
(2)小丽在销售单上记录了两天的数据如表:
日期 | A款女鞋销量 | B款女鞋销量 | 销售总额 |
6月1日 | 12双 | 8双 | 2240元 |
6月2日 | 8双 | 10双 | 1960元 |
请问两种鞋的销售价分别是多少?
(3)小丽妈妈说:“两款鞋的利润率相同”,请通过计算,结合(1)(2)所给信息,判断小丽妈妈的说法是否正确,如果正确,请说明理由;如果错误,能否只调整其中一款的售价,使得两款鞋的利润率相同?能否同时调整两款的售价,使得两款鞋的利润率相同?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某风景区门票价格如图所示,某旅行社有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.
(1)求W关于x的函数关系式,并写出自变量x 的取值范围;
(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了对一颗倾斜的古杉树AB进行保护,需测量其长度:在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,(参考数据: ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).则这颗古杉树AB的长约为( )
A.7.27
B.16.70
C.17.70
D.18.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC=90°,AB=DB,EB=CB,M,N分别是AE,CD的中点.
(1)求证:△ABM≌△DBN;
(2)试探索BM和BN的关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?( )
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题
(1)问题发现
如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;
①CDB的度数为;
②线段AE,CD之间的数量关系为 .
(2)拓展探究
如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.
①求∠CDB的大小;
②请判断线段BF,AD,CD之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,AC=2 ,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com