精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的直径,C、D⊙O上的点,且OC∥BD,AD分别与BC、OC相较于点E、F,则下列结论:①AD⊥BD;②∠AOC=∠AEC; ③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是_____(把你认为正确结论的序号都填上).

【答案】①③

【解析】

①由直径所对圆周角是直角,
②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,
③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;
④得不到△CEF和△BED中对应相等的边,所以不一定全等.

解:①、∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BD,
②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,
∴∠AOC≠∠AEC,
③、∵OC∥BD,
∴∠OCB=∠DBC,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC=∠DBC,
∴BC平分∠ABD,
④、∵△CEF和△BED中,没有相等的边,
∴△CEF与△BED不全等,
故答案为:①③

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形是正方形,垂直,点在一条直线上,且恰好关于所在直线成轴对称.已知,正方形边长为

图中可以绕点________按________时针方向旋转________后能够与________重合;

写出图中所有形状、大小都相等的三角形________;

的代数式表示的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在中,分别是的中点,是对角线,延长线于.若四边形是菱形,则四边形是(

A. 平行四边形 B. 矩形

C. 菱形 D. 正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的角平分线,于点于点

求证:四边形是菱形;

满足什么条件时,四边形是正方形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个同心圆,大圆半径为5cm,小圆的半径为4cm,若大圆的弦AB与小圆有两个公共点,则AB的取值范围是(  )

A. 4<AB<5 B. 6<AB<10 C. 6≤AB<10 D. 6<AB≤10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是圆O的切线,切点为AAB是圆O的弦。过点BBC//AD,交圆O于点C,连接AC,过点CCD//AB,交AD于点D。连接AO并延长交BC于点M,交过点C的直线于点P,且BCP=ACD

1判断直线PC与圆O的位置关系,并说明理由:

2 AB=9BC=6,求PC的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-35),B(-21),C(-13).

1)画出ABC关于x轴的对称图形A1B1C1

2)画出A1B1C1沿x轴向右平移4个单位长度后得到的A2B2C2

3)如果AC上有一点Mab)经过上述两次变换,那么对应A2C2上的点M2的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=ACD是三角形内一点,连接ADBDCD,∠BDC=90°,∠DBC=45°.

(1)求证:∠BAD=∠CAD

(2)求∠ADB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,D、E分别是半径OA、OB的中点,C上一点,CD=CE.

(1)求证:=

(2)若∠AOB=120°,CD=,求半径OA的长.

查看答案和解析>>

同步练习册答案