【题目】如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?
![]()
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线
上一点
,
为
轴上一点,连接
,线段
绕点
逆时针旋转90°至线段
,过点
作直线
轴,垂足为
,直线
与直线
交于点
,且
,连接
,直线
与直线
交于点
,则点
的坐标为(______)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,连接BC
(1)如图1,连接AC,作OP⊥AC,垂足为P,求△AOC的面积和线段OP的长;
(2)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )
![]()
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数
图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB.
(1)求证:P为线段AB的中点;
(2)求△AOB的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,∠1至∠6是六个不同位置的圆周角.
![]()
(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;
(2)若∠1-∠2=∠3-∠4,求证: AC⊥BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,我们将圆心坐标和半径均为整数的圆称为“整圆”.如图所示,直线l:y=kx+4
与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为“整圆”的点P个数是_____个.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线
与
轴交于
、
,交
轴于点
.
![]()
(1)抛物线顶点
的坐标为________;
(2)如图2,连接
、
.将
沿
轴方向以每秒1个单位长度的速度向右平移得到
,运动时间为
秒.当
时,求
与
重叠面积
与
的函数解析式,并求出
的最大值;
(3)如图3中,将
绕点
顺时针旋转一定的角度
得到
,边
与抛物线的对称轴交于点
.在旋转过程中,是否存在一点
,使得
?若存在,直接写出所有满足条件的点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com