【题目】如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是( )
A. B. C. D.
【答案】A
【解析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,
①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;
②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.
【解答】解:由题意得:AP=t,AQ=2t,
①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,
S△APQ=APAQ==t2,
故选项C、D不正确;
②当4<t≤6时,Q在边BC上,P在边AD上,如图2,
S△APQ=APAB==4t,
故选项B不正确;
故选:A.
科目:初中数学 来源: 题型:
【题目】观察下面三行数:
2, 4, 8, 16, 32, 64, …;①
0, 6, 6, 18, 30, 66, …;②
1, 2, 4, 8, 16, 32, …;③
(1)分别写出每一行的第个数;
(2)取每行数的第个数,使这三个数的和为162,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.
(1)如图①,当∠BOC=40°时,求∠DOE的度数;
(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;
(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点表示数,点表示数,点表示数,且满足.
(1) , , .
(2)若将数轴折叠,使得点与点重合,则点与表示 的数的点重合;
(3)点以每秒3个单位长度的速度从点向右运动.点以每秒2个单位长度的速度从点向右运动(点、点同时出发),经过几秒,点、点分别到点的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若∠DAB=60°,且AB=4,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm
(1)由图②,E点运动的时间为______s,速度为______cm/s
(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;
(3)当E点停止后,求△ABE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:
①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.
其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:
下列结论错误的是( )
A.在这个变化中,气温是自变量,音速是因变量
B.y随x的增大而增大
C.当气温为30°C时,音速为350米/秒
D.温度每升高5°C,音速增加3米/秒
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com