精英家教网 > 初中数学 > 题目详情

【题目】如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.

(1)求证:AN=MB;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.

【答案】
(1)证明:∵△ACM,△CBN是等边三角形,

∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,

在△CAN和△MCB中,

∴△CAN≌△MCB(SAS),

∴AN=BM


(2)证明:∵△CAN≌△MCB,

∴∠CAN=∠CMB,

又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,

∴∠MCF=∠ACE,

在△CAE和△CMF中,

∴△CAE≌△CMF(ASA),

∴CE=CF,

∴△CEF为等腰三角形,

又∵∠ECF=60°,

∴△CEF为等边三角形


(3)解:连接AN,BM,

∵△ACM、△CBN是等边三角形,

∴AC=MC,BC=CN,∠ACM=∠BCN=60°,

∵∠ACB=90°,

∴∠ACN=∠MCB,

在△ACN和△MCB中,

∴△ACN≌△MCB(SAS),

∴AN=MB.

当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,

即结论1成立,结论2不成立.


【解析】(1)可通过全等三角形来得出简单的线段相等,证明AN=BM,只要求出三角形ACN和MCB全等即可,这两个三角形中,已知的条件有AC=MC,NC=CB,只要证明这两组对应边的夹角相等即可,我们发现∠ACN和∠MCB都是等边三角形的外角,因此它们都是120°,这样就能得出两三角形全等了.也就证出了AN=BM.(2)我们不难发现∠ECF=180﹣60﹣60=60°,因此只要我们再证得两条边相等即可得出三角形ECF是等边三角形,可从EC,CF入手,由(1)的全等三角形我们知道,∠MAC=∠BMC,又知道了AC=MC,∠MCF=∠ACE=60°,那么此时三角形AEC≌三角形MCF,可得出CF=CE,于是我们再根据∠ECF=60°,便可得出三角形ECF是等边三角形的结论.(3)判定结论1是否正确,也是通过证明三角形ACN和BCM来求得.这两个三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此两三角形就全等,AN=BM,结论1正确.如图,当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MNAD相交于点M,与BD相交于点N,连接BMDN

1)求证:四边形BMDN是菱形;

2)若AB=4AD=8,求MD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCDFAB上一点HBC延长线上一点连接FHFBH沿FH翻折使点B的对应点E落在ADEHCD交于点G连接BGFH于点MGB平分CGEBM=2AE=8ED=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上有A、B两个点.

(1)如图1,若AB=a,MAB的中点,C为线段AB上的一点,且,则AC=   ,CB=   ,MC=   (用含a的代数式表示);

(2)如图2,若A、B、C三点对应的数分别为﹣40,﹣10,20.

A、C两点同时向左运动,同时B点向右运动,已知点A、B、C的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M为线段AB的中点,点N为线段BC的中点,在B、C相遇前,在运动多少秒时恰好满足:MB=3BN.

现有动点P、Q都从C点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到B点时,点Q才从C点出发,并以每秒3个单位长度的速度向左移动,且当点P到达A点时,点Q也停止移动(若设点P的运动时间为t).当PQ两点间的距离恰为18个单位时,求满足条件的时间t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店三、四月份出售同一品牌各种规格空调销售台输入下表,回答:

三月

四月

商店平均每月销售空调________台;

商店出售各种规格的空调中,众数有________匹;

在研究六月份进货时,商店经理决定________(匹)的空调要多进,________(匹)的空调要少进.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为(

A.(﹣1,
B.(﹣1, )或(﹣2,0)
C.( ,﹣1)或(0,﹣2)
D.( ,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了完成舌尖上的中国的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:

(1)这次抽查了四类特色美食共 种,扇形统计图中a=  ,扇形统计图中A部分圆心角的度数为  

(2)补全条形统计图;

(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于豆制品类”?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)45+(﹣20);

(2)(﹣8)﹣(﹣1);

(3)|﹣10|+|+8|;

(4)(﹣12)﹣5+(﹣14)﹣(﹣39);

(5)0.47﹣4﹣(﹣1.53)﹣1

(6)36﹣76+(﹣23)﹣105;

(7)﹣20+|﹣14|﹣(﹣18)﹣13;

(8)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣ x2+bx﹣6的图象与x轴交于一点A(2,0),与y轴交于点B,对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.

查看答案和解析>>

同步练习册答案