精英家教网 > 初中数学 > 题目详情
已知:关于x的方程①x2-(m+2)x+m-2=0有两个符号不同的实数根x1,x2,且x1>|x2|>0;关于x的方程②mx2+(n-2)x+m2-3=0有两个有理数根且两根之积等于2.求整数n的值.
分析:首先对第一个方程进行分析,求出m的取值范围,然后通过第二个方程可知
m2-3
m
=2
,求出m的值,再把m的值代入第二个方程,即得△=(n-2)2-8=k2,通过分析,得关于n和k的二元一次方程组,解方程组即可.
解答:解:由方程①知:
∵x1•x2<0,x1>|x2|>0,
∴x1>0,x2<0,
∵△=(m-2)2+8>0,
∴x1+x2=m+2>0,x1•x2=m-2<0,
∴-2<m<2,
由方程②知:
m2-3
m
=2

∴m2-2m-3=0,
∴m=3(舍去),m=-1(2分)
代入②得:x2-(n-2)x+2=0,
∵方程的两根为有理数,
∴△=(n-2)2+8=k2
∴△=(n-2)2-k2=-8,(n-2+k)(n-2-k)=-8,
n-2+k=4
n-2-k=-2
n-2+k=2
n-2-k=-4

∴n=5或n=1.
点评:本题主要考查根与系数的关系、根的判别式、解二元一次方程组,关键在于确定m的取值,然后分析出关于n和k的二元一次方程组.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数)
(1)则k的取值范围是
k<1

(2)若k为非负整数,则此时方程的根是
-3或1

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程ax2-(1-3a)x+2a-1=0,求证:a取任何实数时,方程ax2-(1-3a)x+2a-1=0总有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程x2+kx-12=0,求证:方程有两个不相等的实数根.

查看答案和解析>>

同步练习册答案