【题目】已知将一副三角板(直角三角板和直角三角板)的两个顶点重合于点.
(1)如图1,将直角三角板绕点逆时针方向转动,当恰好平分时,的度数是 _.
(2)如图2,当三角板摆放在内部时,作射线平分,射线平分,如果三角板在内绕点任意转动,的度数是否发生变化?如果不变,求其值;如果变化,说明理由.
(3)当三角板绕点继续转动到如图3所示的位置时,作射线平分,射线平分,请你求出此时钝角的度数.
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD. 若AC=2,BC=1,则△BCD的周长为___________________.
(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF.(要求:尺规作图,不写作法,保留作图痕迹)
②在图3中补全图形,求∠EOF的度数.
③若,则=_______________.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB=(为常数),点C为直线AB上一点,点P、Q分别在线段BC、AC上,且满足CQ=2AQ,CP=2BP.
(1)如图,当点C恰好在线段AB中点时,则PQ=_______(用含的代数式表示);
(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;
(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ-2PQ与1的大小关系,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).
(1)当运动时间为t秒时,AP的长为 厘米,QC的长为 厘米;(用含t的式子表示)
(2)当t为何值时,△PBQ是直角三角形?
(3)连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC边长为4,点P,Q分别是AB,BC边上的动点,且AP =BQ= x,作□PQCR,则用含x的代数式表示□PQCR的面积为______;当PC∥AR时, x =____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC中,点A,C分别在x轴,y轴的正半轴上,OA=4,OC=2.点P(m,0)是射线OA上的动点,E为PC中点,作□OEAF,EF交OA于G,
(1)写出点E,F的坐标(用含m的代数式表示):E(_____,_____),F(______,_____).
(2)当线段EF取最小值时,m的值为______;此时□OEAF的周长为______.
(3)①当□OEAF是矩形时,求m的值.
②将△OEF沿EF翻折到△O′EF,若△O′EF与△AEF重叠部分的面积为1时,m的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2台大收割机和5台小收割机同时工作2 h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5 h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:
碟子的个数 | 碟子的高度(单位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);
(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com