精英家教网 > 初中数学 > 题目详情

【题目】已知线段AB=(为常数),点C为直线AB上一点,点PQ分别在线段BCAC上,且满足CQ=2AQCP=2BP.

(1)如图,当点C恰好在线段AB中点时,则PQ=_______(用含的代数式表示);

(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;

(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ-2PQ1的大小关系,并说明理由。

【答案】(1);(2);(3)2AP+CQ-2PQ<1

【解析】

(1)设AQ=xBP=y,则CQ=2xCP=2y.由AB=AQ+CQ+CP+PB= m,得到x+y=,由PQ=QC+CP=2x+2y即可得到结论;

(2)分五种情况讨论:C在线段AB上;CA的左边;CB的右边;BC重合,AC重合.

(3)设AQ=xBP=y,则CQ=2xCP=2y.根据(2)得到PQ=AP=PQAQ=

代入2AP+CQ-2PQ即可得到结论.

(1)设AQ=xBP=y,则CQ=2xCP=2y

AB=AQ+CQ+CP+PB= m,∴x+2x+2y+y=m,∴x+y=PQ=QC+CP=2x+2y=2(x+y)=

(2)分五种情况讨论:

C在线段AB上,由(1)可得:PQ=

②若CA的左边,如图1.

AQ=xBP=y,则CQ=2xCP=2y

AB=CBCA= (CP+PB)-(CQ+AQ)=m,∴(2y+y)-(x+2x)=m,∴yx=PQ=CPCQ=2y-2x=2(yx)=

CB的右边,如图2.

AQ=xBP=y,则CQ=2xCP=2y

AB=CACB= (CQ+AQ)-(CP+PB) =m,∴(2x+x)-(2y+y)=m,∴xy=PQ= CQCP=2x-2y=2(xy)=

BC重合,则PB也重合,如图3.

AQ=x,则CQ=BQ=2xCP=2BP=0,∴PQ=BQ=2xAB=3x=m,∴PQ=

AC重合,则QA也重合,如图4.

BP=y,则CQ=AQ=0,CP=2BP=2y,∴PQ=CP=2yAB=3y=m,∴PQ=

综上所述C为直线AB上任一点PQ长度为常数

(3)如图1.设AQ=xBP=y,则CQ=2xCP=2yPQ=CPCQ=2y-2x=2(yx)=

AP=PQAQ=.2AP+CQ-2PQ==0,∴2AP+CQ-2PQ<1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在由边长为1的小正方形组成的网格图中有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形)

1)请直接写出sinABC的值:

2)请在图中画格点三角形DEF,使得DEF∽△ABC,且相似比为21

3)请在图中确定格点M,使得BCM的面积为6.如果符合题意的格点M不止一个,请分别用M1M2M3表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个“磁悬浮的轨道架上做钢球碰撞实验,如图 1 所示,轨道长为 180,轨道架上有三个大小、质量完全相同的钢球,轨道左右各有一个钢制挡板 ,其中 到左挡板的距离为 30 到右挡板的距离为 60两球相距40.现以轨道所在直线为数轴,假定 球在原点,球代表的数为 40,如图 2 所示,解答下列问题:

1)在数轴上,找出 球及右挡板 所代表的数,并填在图中括号内.

2)碰撞实验中(钢球大小、相撞时间不记),钢球的运动都是匀速,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动.

球以每秒 10 的速度向右匀速运动,则 球第二次到达 球所在位置时用了 秒;经过 63 秒时,三球在数轴上所对应的数分别是

如果两球同时开始运动,球向左运动, 球向右运动,球速度是每秒 8球速度是每秒 12,问:经过多少时间 两球相撞?相撞时在数轴上所对应的数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.

(1)补充完成下面的成绩统计分析表:

组别

平均分

中位数

方差

合格率

优秀率

甲组

6.7

3.41

90%

20%

乙组

7.5

1.69

80%

10%

(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)

(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:

原题:如图1,点EF分别在正方形ABCD的边BCCD上,,连接EF,求证:EF=BE+DF.

解题由于AB=AD,我们可以延长CD到点G,使DG=BE,易得,可证.再证明,得EF=FG=DG+FD=BE+DF.

问题(1):如图2,在四边形ABCD中,AB=ADEF分别是边BCCD上的点,且,求证:EF=BE+FD

问题(2):如图3,在四边形ABCD中,AB=AD=1,点EF分别在四边形ABCD的边BCCD上的点,且,求此时的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的两直角边所在直线分别与直线BC,CD交于M,N.

(1如图1,若点O与点A重合,则OM与ON的数量关系是__________________;

(2如图2,若点O正方形的中心(即两对角线的交点,则(1中的结论是否仍然成立?请说明理由

(3如图3,若点O在正方形的内部(含边界,当OM=ON时,请探究点O在移动过程中可形成什么图形?

(4如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部移动所形成的图形”提出一个正确的结论.(不必说理

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图是杨辉三角系数表,它的作用是指导读者按规律写出行如(ab展开式的系数,请你仔细观察下表中的规律,填出展开式中所缺的系数。

1)、(a+b)=a+b

2)、(a+b)=a+2ab+b

3)、(a+b) =a+3ab+3ab+b

4)、(a+b=a+ ab+6ab+4ab+b

5)(a+b=a+ ab+ ab+ ab+ ab+b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知将一副三角板(直角三角板和直角三角板)的两个顶点重合于点.

1)如图1,将直角三角板绕点逆时针方向转动,当恰好平分时,的度数是 _.

2)如图2,当三角板摆放在内部时,作射线平分,射线平分,如果三角板内绕点任意转动,的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

3)当三角板绕点继续转动到如图3所示的位置时,作射线平分,射线平分,请你求出此时钝角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,动点EF分别从DC两点同时出发,以相同的速度在直线DCCB上移动.

1)如图1,当点E在边DC上自DC移动,同时点F在边CB上自CB移动时,连接AEDF交于点P,请你写出AEDF的数量关系和位置关系,并说明理;

2)如图2,当EF分别在边CDBC的延长线上移动时,连接AEDF,(1)中的结论还成立吗?(请你直接回答,不需证明);连接AC,求ACE为等腰三角形时CECD的值;

3)如图3,当EF分别在直线DCCB上移动时,连接AEDF交于点P,由于点EF的移动,使得点P也随之运动,请你画出点P运动路径的草图.AD=2,试求出线段CP的最大值.

1 2 3

查看答案和解析>>

同步练习册答案