【题目】如图.在
中,
,
,以直角顶点
为圆心,
长为半径画弧交
于点
,过点
作
于点
,若
,则
的周长用含
的代数式表示为_______________.
![]()
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=2AC, 点D在BC上,且∠CAD=∠B,点E是AB的中点,联结CE与AD交于点G,点F在BC上,且∠CEF=∠BAC.
(1)若∠BAC=90°,如图1,求证: EG+ EF=
AC;
(2)若∠BAC=120°,如图2,请猜想线段EG,EF和AC之间的数量关系并证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A点坐标为(3,4),将线段OA绕原点O逆时针旋转90°得到线段OA′,则点A′的坐标是( )
A. (﹣4,3) B. (﹣3,4)
C. (3,﹣4) D. (4,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.
(1)甲、乙两队单独完成这项工程各需几个月的时间?
(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等腰
在平面直角坐标系中的位置如图,点
坐标为
,点
坐标为
.
![]()
(1)若将
沿
轴向左平移
个单位,此时点
恰好落在反比例函数
的图像上,求
的值;
(2)若将
绕点
顺时针旋转
,点
恰好落在反比例函数
的图像上,求
的值;
(3)若将
绕点
顺时针旋转
度
到
位置,当点
、
恰好同时落在(2)中所确定的反比例函数的图像上时,请直接写出经过点
、
且以
轴为对称的抛物线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=
S△BOC,求点D的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个可以自由转动的均匀转盘
,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:
①分别转动转盘
;
②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等份线上,那么重转一次,直到指针指向某一份为止).
![]()
【1】用列表法或树状图分别求出数字之积为3的倍数和数字之积为5的倍数的概率;
【2】小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABE,△BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,下列说法正确的有:___________
①AD=EC;②BM=BN;③MN∥AC;④EM=MB.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com