精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△AOB∽Rt△DOC,∠ABO=30°,∠AOB=∠COD=90°,MOA的中点,OA=4,将△COD绕点O旋转一周,直线AD,CB交于点P,连接MP,则MP的最小值是_________

【答案】4-2

【解析】

根据相似三角形的判定定理证明COB∽△DOA,得到∠OBC=OAD,得到∠APB=AOB=90°,求出MSPS,根据三角形三边关系解答即可.

如图:

AB的中点S,连接MS、PS,

PS-MS≤PM≤MS+PS,

∵∠AOB=90°,OA=4,ABO=30°,

AB=2OA=8,OB=4

∵∠AOB=COD=90°,

∴∠COB=DOA,

∵△AOB∽△DOC,

∴△COB∽△DOA,

∴∠OBC=OAD,

∵∠OBC+PBO=180°,

∴∠OAD+PBO=180°,AOB+APB=180°,

∴∠APB=AOB=90°,又SAB的中点,

PS=AB=4,

MOA的中点,SAB的中点,

MS=OB=

MP的最小值为4-

故答案为:4-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点在线段上运动(不与重合),连接,作于点.是等腰三角形,则的度数是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC

(1)求证:四边形ACDE为平行四边形;

(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(x-3)(x-2)-p2=0.

(1)求证:无论p取何值时,方程总有两个不相等的实数根;

(2)设方程两实数根分别为x1、x2,且满足x12+x22=3 x1x2,求实数p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线ACBD相交于点OABCD,添加下列条件不能使四边形ABCD成为平行四边形的是( )

A.ABCDB.OBOD

C.BCD+ADC180°D.ADBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为

(1)求线段AP的长;

(2)DE⊙O的切线,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与反比例函数的图像在第一象限有一个公共点,其横坐标为1,则一次函数的图像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A为函数 图象上一点,连结OA,交函数 的图象于点B,点Cx轴上一点,且AO=AC,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=(k0)的图象经过点A(﹣2,m),过点AABx轴于点B,且△AOB的面积为4.

(Ⅰ)求km的值;

(Ⅱ)设C(x,y)是该反比例函数图象上一点,当1x4时,求函数值y的取值范围.

查看答案和解析>>

同步练习册答案