6.阅读材料,解答问题:
我们可以利用解二元一次方程组的代入消元法解形如$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10①}\\{2x-y=5②}\end{array}\right.$的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:
解:由②得:y=2x-5 ③
将③代入①得:x2+(2x-5)2=10
整理得:x2-4x+3=0,解得x1=1,x2=3
将x1=1,x2=3代入③得y1=1×2-5=-3,y2=2×3-5=1
∴原方程组的解为$\left\{\begin{array}{l}{{x}_{1}=1}\\{{y}_{1}=-3}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=3}\\{{y}_{2}=-1}\end{array}\right.$.
(1)请你用代入消元法解二元二次方程组:$\left\{\begin{array}{l}{2x-y=3①}\\{{y}^{2}-4{x}^{2}+6x-3=0②}\end{array}\right.$;
(2)若关x,y的二元二次方程组$\left\{\begin{array}{l}{2x+y=1①}\\{a{x}^{2}+{y}^{2}+2x+1=0②}\end{array}\right.$有两组不同的实数解,求实数a的取信范围.