精英家教网 > 初中数学 > 题目详情

【题目】如图(1),△ABC,AB=BC,PAB边上一点,连接CP,PAPC为邻边作APCDACPD相交于点E,已知∠ABC=∠AEP=(0°<<90°).

(1)求证: ∠EAP=∠EPA;

(2)APCD是否为矩形?请说明理由;

(3)如图(2),FBC中点,连接FP,∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(MN分别是∠MEN的两边与BAFP延长线的交点).猜想线段EMEN之间的数量关系,并证明你的结论.

【答案】(1)见解析;

(2)APCD是矩形.,理由见解析;

(3)EM=EN,理由见解析.

【解析】

1)根据AB=BC可证∠CAB=∠ACB,则在△ABC△AEP中,有两个角对应相等,根据三角形内角和定理,即可证得;

2)由(1)知∠EPA=∠EAP,则AC=DP,根据对角线相等的平行四边形是矩形即可求证;

3)可以证明△EAM≌△EPN,从而得到EM=EN

证明:(1)△ABC△AEP,

∠ABC=∠AEP,∠BAC=∠EAP,

∠ACB=∠APE,

△ABC,AB=BC.∠ACB=∠BAC,

∠EPA=∠EAP,

(2)APCD是矩形.

四边形APCD是平行四边形,

AC=2EA,PD=2EP.

(1), ∠EPA=∠EAP.

EA=EP,进而AC=PD

APCD是矩形.

(3)EM=EN

EA=EP,∠EPA=90° -

∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+

(2), ∠CPB=90°,FBC的中点,FP=FB,

∠FPB=∠ABC=

∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° -+=90°+

∠EAM=∠EPN

∠AEP绕点E顺时针旋转适当的角度,得到∠MEN

∠AEP-∠AEN =∠MEN-∠AEN,∠MEA=∠NEP.

△EAM≌△EPN,

EM=EN.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有长为 24m 的篱笆,现一面利用墙(墙的最大可用长度 a 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB xm,面积为 Sm2

1 S x 的函数关系式及 x 值的取值范围;

2 要围成面积为 45m2 的花圃,AB 的长是多少米?

3 AB 的长是多少米时,围成的花圃的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).

(1)求反比例函数和一次函数的表达式;

(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC边上一点,EAD的中点,过点ABC的平行线交BE的延长线于F,且AF=CD,连接CF.

(1)求证:△AEF≌△DEB;

(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.

(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,BD平分∠ABC,且ADBDEAC的中点,AD6cmBD8cmBC16cm,则DE的长为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O 的直径为 4,AB 是⊙O 的弦,∠AOB=120°,点 P 在⊙O 上,若点 P到直线 AB 的距离为 1,则∠PAB 的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示

(1)求证:△ABE≌△ADF;

(2)试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

同步练习册答案