【题目】已知菱形在平面直角坐标系的位置如图所示,,,,点是对角线上的一个动点,,当周长最小时,点的坐标为_____.
【答案】(3,2)
【解析】
点D关于AC的对称点是点B,连接EB,交AC于点P,再得出EB即为EP+DP最短,解答即可.
连接ED,如图,
∵点D关于AC的对称点是点B,
∴DP=BP,
∴EB即为EP+DP最短,
即此时△EPD周长最小,
连接BD交AC于M,
过M作MF⊥AB于F,
∵四边形ABCD是菱形,
∴AM=AC=,AC⊥BD,
∴BM==,
∴MF==2,
∴AF==4,
∵A(1,1),B(6,1),
∴AB∥x轴,
∴直线AB与x轴间的距离是1,
∴M点的纵坐标为2+1=3,
∴M(5,3),
∴直线AC的解析式为:,
∵E(0,3),B(6,1),
∴直线BE的解析式为:y=,
∴ ,
解得,,
∴点P的坐标为(3,2).
故答案为:(3,2)
科目:初中数学 来源: 题型:
【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(抗击疫情)为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“听课不停学”的要求,各地学校也都开展了远程网络教学,某校集中为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据结果绘制成如下两幅不完整的统计图。
(1)本次调查的人数有多少人?
(2)请补全条形图;
(3)请求出“在线答疑”在扇形图中的圆心角度数;
(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与坐标轴分别交于、、三点,其中,点在轴正半轴上,连接、.点从点出发,沿向点移动;同时点从点出发,沿轴向点移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接,设移动时间为.
(1)若时,与相似,求这个二次函数的表达式;
(2)若可以为直角三角形,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为( )
A.2B.3C.4D.4.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2cm,点E、F在边AD上运动,且AE=DF.CF交BD于G,BE交AG于H.点H在圆弧上运动上,点H所运动的圆弧的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与x轴、y轴相交于点B、C,经过点B、C的抛物线与x轴的另一个交点为A(-1,0).
(1)求这个抛物线的表达式;
(2)已知点D在抛物线上,且横坐标为2,求出△BCD的面积;
(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,规定:抛物线的伴随直线为.例如:抛物线的伴随直线为,即.
(1)在上面规定下,抛物线的顶点为 .伴随直线为 ;抛物线与其伴随直线的交点坐标为 和 ;
(2)如图,顶点在第一象限的抛物线与其伴随直线相交于点(点在点的右侧)与轴交于点
①若求的值;
②如果点是直线上方抛物线的一个动点,的面积记为,当取得最大值时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com