【题目】一个机器人从数轴原点出发,沿数轴正方向,以每前进步后退步的程序运动,设该机器人每秒钟前进或后退步,并且每步的距离为个单位长,表示第秒时机器人在数轴上的位置所对应的数,给出下列结论(1);(2);(3);(4);(5)其中,正确结论的个数是( )
A.个B.个C.个D.个
【答案】C
【解析】
机器人每5秒完成一个循环,每个循环前进1步,n÷5的整数值即前进的步数,余数是1,总步数加1,是2加2,是3加3,是4加2.
依题意得:机器人每5秒完成一个前进和后退,即前5秒对应的数是1,2,3,2,1;根据此规律即可推导判断:(1)和(2),显然正确;
(3)中,76÷5=15……1,故x76=15+1=16,77÷5=15……2,故x77=15+2=17,16<17,故错误;
(4)中,103÷5=20……3,故x103=20+3=23,104÷5=20……4,故x104=20+2=22,23>22,故错误;
(5)中,2018÷5=403……3,故x2018=403+3=406,2019÷5=403……4,故x2019=403+2=405,故正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)AC与CD相等吗?为什么?
(2)若AC=2,AO=,求OD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,是由几个小立方块所搭几何体的俯视圈,小立方块中的数字表示在该位置小立方块的个数.
(1)请在网格内画出从正面和从左面看到的这个几何体的形状图.
(2)如图,是小明用9个棱长为1的小立方块积木搭成的几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数,他请小亮用尽可能少的同样大小的立方块在旁边再搭建一个几何体,使小亮所搭建的几何体恰好可以和小明所搭建的几何体拼成一个大的正方体(即拼大正方体时将其中一个几何体翻转,且假定组成每个几何体的立方块粘合在一起),则:
①小亮至少还需要 个小正方体;
②上面①中小亮所搭几何体的表面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
求证:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强校园周边治安综合治理,警察巡逻车在学校旁边的一条东西方向的公路上执行治安巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程(单位:千米)为:
(1)此时,这辆巡逻车司机如何向警务处描述他现在的位置?
(2)已知每千米耗油升,如果警务处命令其巡逻车马上返回出发点,这次巡逻共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为( )
A. B. 2 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍。
(1)求西装和衬衫的单价各为多少元?
(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com