【题目】如图,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN,当MN∥B′D′ 时,解答下列问题:
(1)求证:△AB′M≌△AD′N;
(2)求α的大小.
【答案】(1)见解析;(2)α=15°
【解析】
(1)利用四边形AB′C′D′是菱形,得到AB′=B′C′=C′D′=AD′,根据∠B′AD′=∠B′C′D′=60°,可得△AB′D′,△B′C′D′是等边三角形,进而得到△C′MN是等边三角形,则有C′M=C′N,MB′=ND′,利用SAS即可证明△AB′M≌△AD′N;
(2)由(1)得∠B′AM=∠D′AN,利用∠CAD=∠BAD=30°,即可解决问题.
(1)∵四边形AB′C′D′是菱形,
∴AB′=B′C′=C′D′=AD′,
∵∠B′AD′=∠B′C′D′=60°,
∴△AB′D′,△B′C′D′是等边三角形,
∵MN∥B′C′,
∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,
∴△C′MN是等边三角形,
∴C′M=C′N,
∴MB′=ND′,
∵∠AB′M=∠AD′N=120°,AB′=AD′,
∴△AB′M≌△AD′N(SAS),
(2)由△AB′M≌△AD′N得:∠B′AM=∠D′AN,
∵∠CAD=∠BAD=30°,
∴∠D′AN=∠B′AM=15°,
∴α=15°
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴的正半轴交于A,C两点(点A在点C右侧),与y轴正半轴交于点B,连结BC,将△BOC沿直线BC翻折,若点O恰好落在线段AB上,则称该抛物线为”折点抛物线”,下列抛物线是“折点抛物线”的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图①,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,BC,AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;
(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,直径DE⊥AB于点F,交BC于点 M,DE的延长线与AC的延长线交于点N,连接AM.
(1)求证:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与y轴交于点A,点B是抛物线上的一点,过点B作轴于点C,且点C的坐标为.
(1)求直线AB的表达式;
(2)若直线轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;
(3)当四边形MNCB是平行四边形时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.
(1)求二次函数解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3) 抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017湖北省鄂州市)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题.
(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;
(2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋中,装有红、黄、白三种只有颜色不同的小球,其中红色小球有6个,黄、白色小球的数量相同,为估计袋中黄色小球的数量,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再搅匀多次试验发现摸到红色的频率是,则估计黄色小球的个数是( )
A.21B.40C.42D.48
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com