【题目】如图,抛物线与y轴交于点A,点B是抛物线上的一点,过点B作轴于点C,且点C的坐标为.
(1)求直线AB的表达式;
(2)若直线轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;
(3)当四边形MNCB是平行四边形时,求点Q的坐标.
【答案】(1);(2)线段MN长度的最大值为;(3)当点Q的坐标为或时,四边形MNCB是平行四边形.
【解析】
(1)先求出点A、B的坐标,再根据待定系数法求解即可;
(2)设线段MN的长为L,点M的横坐标为x,用x的代数式表示出MN的长,再利用二次函数的性质即可得出结果;
(3)根据题意只需满足即可,而BC=2,根据(2)题的结论可得关于x的方程,解方程即可求出结果.
(1)令,则,即.
B为抛物线上的一点,轴,,
B点的横坐标为9,纵坐标为,即.
设直线AB的函数解析式为,将代入,得:
,解得:.
直线AB的函数解析式为.
(2)设线段MN的长为L,、,则
.
故线段MN长度的最大值为.
(3)若四边形MNCB是平行四边形,则需要,由点B、C的坐标可知,
,解得:或.
故当点Q的坐标为或时,四边形MNCB是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点且与AC的另一个交点为F.
(1)求证:DE是⊙O的切线;
(2)AB=12,∠BAC=60°,求线段DE,EF与所围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下去……,若点,.则点的坐标是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙ O,其外角平分线AD交⊙ O于D,DM⊥ AC于M,下列结论中正确的是 ____________。
①DB=DC; ②AC+AB=2CM;③AC﹣AB=2AM; ④.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2+x+4的图象与x轴交于B,C两点(B在C的左侧),与y轴交于点A.
(1)求出点A,B,C的坐标.
(2)在抛物线上有一动点P,抛物线的对称轴上有另一动点Q,若以B,C,P,Q为顶点的四边形是平行四边形,直接写出点P的坐标.
(3)向右平移抛物线,使平移后的抛物线恰好经过△ABC的外心,求出平移后的抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN,当MN∥B′D′ 时,解答下列问题:
(1)求证:△AB′M≌△AD′N;
(2)求α的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:
(1)若要每天的利润不低于2250元,则销售单价至少为多少元?
(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是等边三角形,D 为 CB 延长线上一点,E 为 BC 延长线上点.
(1)当 BD、BC 和 CE 满足什么条件时,△ADB∽△EAC?
(2)当△ADB∽△EAC 时,求∠DAE 的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com