【题目】看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD平分∠BAC. 证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°
∴∠ADC=∠EGC(等量代换)
∴AD∥EG
∴∠1=∠3
∠2=∠E
又∵∠E=∠3( 已知)
∴∠1=∠2
∴AD平分∠BAC .
【答案】(垂直的定义);(同位角相等,两直线平行);(两直线平行,内错角相等);(两直线平行,同位角相等);(等量代换);(角平分线的定义)
【解析】证明:∵AD⊥BC于D,EG⊥BC于G( 已知 ), ∴∠ADC=90°,∠EGC=90° (垂直的定义),
∴∠ADC=∠EGC(等量代换),
∴AD∥EG(同位角相等,两直线平行),
∴∠1=∠3(两直线平行,内错角相等),
∠2=∠E(两直线平行,同位角相等),
又∵∠E=∠3( 已知),
∴∠1=∠2 (等量代换),
∴AD平分∠BAC,
所以答案是:(垂直的定义);(同位角相等,两直线平行);(两直线平行,内错角相等);(两直线平行,同位角相等);(等量代换);(角平分线的定义).
【考点精析】关于本题考查的平行线的判定与性质,需要了解由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=4cm,M是AB的中点,点P、Q分别从A、C两点同时出发,以1cm/s的速度沿AC、CB方向均速运动,到点C、B时停止运动,设运动时间为,△PMQ的面积为S (cm2),则S (cm2)与的函数关系可用图象表示为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DFEC的面积之比是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com