精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,∠B=C=90°EBC的中点,DE平分∠ADC

(1)求证:AE平分BAD

(2)求证:ADABCD

【答案】1)见解析;(2)见解析

【解析】

1)过点EEFDA于点F,首先根据角的平分线上的点到角的两边的距离相等可得CE=EF,根据等量代换可得BE=EF,再根据角平分线的判定可得AE平分∠BAD
2)首先证明RtDFERtDCE可得DC=DF,同理可得AF=AB,再由AD=AF+DF利用等量代换可得结论;

1)证明:过点EEFDA于点F


∵∠C=90°DE平分∠ADC
CE=EF
EBC的中点,
BE=CE
BE=EF
又∵∠B=90°EFAD
AE平分∠BAD
2)证明:AD=CD+AB
∵∠C=DFE=90°
∴在RtDFERtDCE


RtDFERtDCEHL),
DC=DF
同理AF=AB
AD=AF+DF
AD=CD+AB

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABD△GDF都是等腰直角三角形,BDDF均为斜边(BD<DF).

(1)如图1,B,D,F在同一直线上,过FMF⊥GF于点F,取MF=AB,连结AMBF于点H,连结GA,GM.

求证:AH=HM;

请判断△GAM的形状,并给予证明;

请用等式表示线段AM,BD,DF的数量关系,并说明理由.

(2)如图2,GD⊥BD,连结BF,取BF的中点H,连结AH并延长交DF于点M,请用等式直接写出线段AM,BD,DF的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,E、F分别是AB、BC边的中点,EPCD于点P,BAD=110°,则∠FPC的度数是(  )

A. 35° B. 45° C. 50° D. 55°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.

(1)求证:AEDE;

(2)若∠BAF=60°,AF=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是高,AEBF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.

(1)操作发现:若AB=AC,BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CEBD的位置关系和数量关系是      

(2)猜想论证:

在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.

(3)拓展延伸:

如图③,若AB≠AC,BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于     度时,线段CEBD之间的位置关系仍成立(点C、E重合除外)?此时若作DFAD交线段CE于点F,且当AC=3时,请直接写出线段CF的长的最大值是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE平分,交AC延长线于F,且垂足为E,则下列结论:其中正确的结论有______填写序号

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

[来

根据以上信息,解答下列问题:

(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出关于的函数表达式;

(2)请你帮助小明计算并选择哪个出游方案合算。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在等腰直角ABC中,∠BAC90°,点D从点B出发沿射线BC方向移动.在AD右侧以AD为腰作等腰直角ADE,∠DAE90°.连接CE

1)求证:ACE≌△ABD

2)点D在移动过程中,请猜想CECDDE之间的数量关系,并说明理由;

3)若AC,当CD1时,结合图形,请直接写出DE的长

查看答案和解析>>

同步练习册答案