精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.

(1)操作发现:若AB=AC,BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CEBD的位置关系和数量关系是      

(2)猜想论证:

在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.

(3)拓展延伸:

如图③,若AB≠AC,BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于     度时,线段CEBD之间的位置关系仍成立(点C、E重合除外)?此时若作DFAD交线段CE于点F,且当AC=3时,请直接写出线段CF的长的最大值是  

【答案】(1) CE=BD,CEBD;(2) 仍然成立 (3) 45°;

【解析】

(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,根据全等三角形的性质可得CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,即可得结论CE=BD,CE⊥BD.(2)1)中的结论仍然成立,证明的方法与(1)一样;(3)AAMBCM,过E点作EN垂直于MA延长线于N(如图3),根据已知条件易证RtAMDRtENA,可得NE=MA,再证明RtAMDRtDCF,设DC=x,根据相似三角形的性质列出比例式,得到CFx的二次函数关系式,利用二次函数性质解决问题即可.

解:(1)①∵AB=AC,BAC=90°,

∵线段AD绕点A逆时针旋转90°得到AE,

AD=AE,BAD=CAE,

∴△BADCAE,

CE=BD,ACE=B,

∴∠BCE=BCA+ACE=90°,

∴线段CE,BD之间的位置关系和数量关系为:CE=BD,CEBD;

(2)(1)中的结论仍然成立.理由如下:

如图2,

∵线段AD绕点A逆时针旋转90°得到AE,

AE=AD,DAE=90°,

AB=AC,BAC=90°

∴∠CAE=BAD,

∴△ACE≌△ABD,

CE=BD,ACE=B,

∴∠BCE=90°,

所以线段CE,BD之间的位置关系和数量关系为:CE=BD,CEBD;

(3)过AAMBCM,过E点作EN垂直于MA延长线于N,如图3,

∵线段AD绕点A逆时针旋转90°得到AE,

∴∠DAE=90°,AD=AE,

∴∠NAE=ADM,易证得RtAMDRtENA,

NE=AM,

CEBD,即CEMC,∴∠MCE=90°,

∴四边形MCEN为矩形,

NE=MC,AM=MC,

∴∠ACB=45°,

∵四边形MCEN为矩形,

RtAMDRtDCF,

=,设DC=x,

∵在RtAMC中,∠ACB=45°,AC=3

AM=CM=3,MD=3﹣x,=

CF=﹣x2+x=﹣(x﹣2+

∴当x=时有最大值,最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,若点M是y轴正半轴上任意一点,过点M作PQx轴,分别交函数y=(x<0)和y=(x>0)的图象于点P和Q,连接OP和OQ.以下列结论:

①∠POQ不可能等于90°;

这两个函数的图象一定关于y轴对称;

若SPOM=SQOM,则k1+k2=0;

⑤△POQ的面积是(|k1|+|k2|).

其中正确的有_____(填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD右侧△ADE,使AD=AE,∠DAE =∠BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;

(2)设

①如图2,当点在线段BC上移动,则之间有怎样的数量关系?请说明理由;

②当点在直线BC上移动,则之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在直角坐标系中,矩形ABCO的边OAx轴上,边OCy轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且ADy轴于点E.那么点D的坐标为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠B=C=90°EBC的中点,DE平分∠ADC

(1)求证:AE平分BAD

(2)求证:ADABCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( .

①作出AD的依据是SAS;②∠ADC=60°

③点DAB的中垂线上;④SDACSABD=12

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y = kx + b的图象经过点(1,-2)(2,0).

(1)求这个一次函数的关系式:

(2)将该函数的图象沿x轴向左平移3个单位后,求所得图象对应的函数表达式。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a0)经过点A(3,0),B(﹣1,0),C(0,﹣3).

(1)求该抛物线的解析式;

(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;

(3)若点Qx轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案