精英家教网 > 初中数学 > 题目详情

【题目】一次函数y = kx + b的图象经过点(1,-2)(2,0).

(1)求这个一次函数的关系式:

(2)将该函数的图象沿x轴向左平移3个单位后,求所得图象对应的函数表达式。

【答案】1y=2x4;(2y=2x+2

【解析】

1)直接把已知两点代入一次函数y=kx+b,求出kb的值,故可得出一次函数的解析式;

2)根据“左加右减”的原则求出把这条直线向左平移3个单位长度后的函数关系式即可.

1)∵一次函数y=kx+b的图象经过点(1-2)和(20),∴,解得:,∴一次函数的解析式为:y=2x4

2)根据“左加右减”的原则可知,这条直线向左平移3个单位长度后的函数关系式是y=2x+3)-4,即y=2x+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC120°.以点D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN.

(1)求证:MNBMNC

(2)△AMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.

(1)操作发现:若AB=AC,BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CEBD的位置关系和数量关系是      

(2)猜想论证:

在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.

(3)拓展延伸:

如图③,若AB≠AC,BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于     度时,线段CEBD之间的位置关系仍成立(点C、E重合除外)?此时若作DFAD交线段CE于点F,且当AC=3时,请直接写出线段CF的长的最大值是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家园林公司承接了某项园林绿化工程,己知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的1.5倍,如果甲公司先单独工作10天,再由乙公司单独工作l5天,这样恰好完成整个工程的

(1)求甲、乙两公司单独完成这项工程各需多少天?

(2)园林部门要求完成该绿化工程的时间不得超过30天,甲、乙公司合作若干天后,甲公司另有项目离开,剩下的工程由乙公司单独完成,求甲、乙两公司至少合作多少天.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

[来

根据以上信息,解答下列问题:

(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出关于的函数表达式;

(2)请你帮助小明计算并选择哪个出游方案合算。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从

某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)

与时间x(分)之间的函数关系如图所示.根据图象信息给出下列说法:

①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;

③若12分钟后只放水,不进水,还要8分钟可以把水放完;

④若从一开始进出水管同时打开需要24分钟可以将容器灌满.

以上说法中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距60km,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人到B地的距离y(km)与甲出发时间x(h)的函数关系图象.

(1)根据图象,求乙的行驶速度.

(2)解释交点A的实际意义.

(3)求甲出发多少时间,两人之间恰好相距5km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).

(1)求该班的总入数,并补全条形统计图.

(2)求D(泗水)所在扇形的圆心角度数;

(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分7分) 已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BCAC=OB

(1)求证:AB是⊙O的切线;

(2)若∠ACD=45°OC=2,求弦CD的长.

查看答案和解析>>

同步练习册答案