【题目】A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中、分别表示甲、乙两人到B地的距离y(km)与甲出发时间x(h)的函数关系图象.
(1)根据图象,求乙的行驶速度.
(2)解释交点A的实际意义.
(3)求甲出发多少时间,两人之间恰好相距5km?
【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析.
【解析】
(1)由图像得知乙从B地去A地共用3小时,从而求乙的速度;(2)根据函数图象中的数据可以求出点A的坐标,并说出点A的实际意义;(3)根据(1)中的函数解析式,可以列出相应的等式,从而可以求得甲出发多少时间,两人之间的距离恰好相距5km.
解:(1)由图象可得,
乙的行驶速度为:60÷(3.5-0.5)=20km/h,
(2)设l1对应的函数解析式为y1=k1x+b1,把(0,60)(2,0)代入得: ,得,
即l1对应的函数解析式为y1=-30x+60,
设l2对应的函数解析式为y2=k2x+b2,把(0.5,0)(3.5,60)代入得: ,得,
即l2对应的函数解析式为y2=20x-10,
∴ ,得 ,
即点A的坐标为(1.4,18),
∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B地18km;(3)由题意可得,
当时(-30x+60)-(20x-10)=5,解得x=1.3
当时,(20x-10)-(-30x+60)=5,解得x=1.5
答:当甲出发1.3h或1.5h时,两人之间的距离恰好相距5km;
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y = kx + b的图象经过点(1,-2)和(2,0).
(1)求这个一次函数的关系式:
(2)将该函数的图象沿x轴向左平移3个单位后,求所得图象对应的函数表达式。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将直角三角板ABC绕直角顶点C逆时针旋转角度,得到△DCE,其中CE与AB交于点F,∠ABC=30°,连接BE,若△BEF为等腰三角形(即有两内角相等),则旋转角的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距 千米.
(2)B出发后 小时与A相遇.
(3)B走了一段路后,自行车发生故障,进行 修理,所用的时间是 小时.
(4)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米.在图中表示出这个相遇点C.
(5)求出A行走的路程S与时间t的函数关系式.(写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).
(1)求该抛物线的解析式;
(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;
(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t(t>0)秒.
(1)AC= cm;
(2)若点P恰好在∠ABC的角平分线上,求此时t的值;
(3)在运动过程中,当t为何值时,△ACP为等腰三角形(直接写出结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com