精英家教网 > 初中数学 > 题目详情
11.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于(  )
A.3mB.2mC.1mD.4m

分析 由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=$\frac{1}{2}$BC,在Rt△ABC中易求BC,进而可求DE.

解答 解:如右图所示,
∵立柱BC、DE垂直于横梁AC,
∴BC∥DE,
∵D是AB中点,
∴AD=BD,
∴AE:CE=AD:BD,
∴AE=CE,
∴DE是△ABC的中位线,
∴DE=BC,
在Rt△ABC中,
∵∠ADE=60°,
∴∠A=30°,
∴BC=$\frac{1}{2}$AB=6m,
∴DE=3m.
故选A.

点评 本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,四边形ABCD是一个面积为48的直角梯形,∠C=90°,∠DAO=45°,AB∥CD,点B(10,0)直线l经过点A,D两点,且动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒4个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.
(1)点A的坐标为(-4,0);直线l的解析式为y=x+4;
(2)试求点Q与点M的相遇前S与t的函数关系式,并写出相应的t的取值范围;
(3)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,已知矩形ABCD中,BC=12,∠ACB=30°,动点P在线段AC上,从点A向点C以每秒$\sqrt{3}$个单位的速度运动,设运动时间为t秒,以点P为顶点,作等边△PMN,点M、N在直线BC上,取BC的中点O,以OB为边在Rt△ABC内部作如图2所示的矩形BOEF,点E在线段AC上.
(1)求等边△PMN的边长(用含t的代数式表示);
(2)设等边△PMN和矩形BOEF重合部分面积为S,请直接写出当0≤t≤2时S与t的函数关系式,并写出对应的自变量的取值范围;
(3)点P在运动过程中,是否存在点M,使得△EFM是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC中,DE∥BC,AD=2,AE=3,BD=4,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)请写出图2中阴影部分的面积:(m-n)2或(m+n)2-4mn;
(2)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(m-n)2=(m+n)2-4mn;
(3)根据(2)中的等量关系,解决如下问题:若a+b=7,ab=5,求a-b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图所示,线段AB是圆O的直径,∠CDB=25°,过点C作圆O的切线交AB的延长线于点E,则∠E=40°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是(  )
A.∠B=∠CB.BE=CDC.BD=CED.∠ADC=∠AEB

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如果代数式x2+x+3的值是7,那么代数式x2+x-3的值等于1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,如果AB∥CD,∠B=30°,∠D=30°,那么BC与DE平行吗?为什么?

查看答案和解析>>

同步练习册答案