【题目】某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案所示图形是顶点在原点的抛物线的部分,方案二所示的图形是射线, 设推销员销售产品的数量为(件),付给推销员的月报酬为(元),
(1)请直接写出两种方案中关于的函数关系式:方案一: ,方案二: ;
(2)当销售量达到多少件时,两种方案的月报酬差额将达到元?
(3)若公司决定改进“方案二”:基本工资元,每销售件产品再增加报酬元,当推销员销售量达到件时,方案二的月报酬不低于方案一的月报酬,求的取值范围
【答案】(1),;(2)当销售量达到件时,两种方案的月报酬差额将达到元;(3).
【解析】
(1)分别设出两种方案中关于的函数关系式,用待定系数法求解,即可解答;
(2)根据“两种方案月报酬差额将达到3800元”,得到方程,即可解答;
(3)分别计算出当销售员销售产量达到40件时,方案一与方案二的月报酬,根据方案二的月报酬不低于方案一的月报酬,列出不等式组,即可解答.
解:(1)设,
把代入得:,
解得:,
.
设,
把,代入得:,
解得:,
.
(2)由题意得:,
解得:,(舍去),
答:当销售达到50件时,两种方案月报酬差额将达到3800元.
(3)当销售员销售产量达到40件时,
方案一的月报酬为:,
方案二的月报酬为:,
由题意得:,
解得:,
答:当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬,至少增加40元.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:
①4a+2b<0;
②﹣1≤a≤;
③对于任意实数m,a+b≥am2+bm总成立;
④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中结论正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角△ABC中,BC=10,AC=11,△ABC的面积为33,点P是射线CA上一动点,以BP为直径作圆交线段AC于点E,交射线BA于点D,交射线CB于点F.
(1)当点P在线段AC上时,若点E为中点,求BP的长.
(2)连结EF,若△CEF为等腰三角形,求所有满足条件的BP值.
(3)将DE绕点D顺时针旋转90°,当点E的对应点E'恰好落在BC上时,记△DBE'的面积为S1,△DPE的面积S2,则的值为 .(直接写出答案即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果按此速度增涨,该公司六月份的快递件数将达到多少万件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形的顶点,过点的双曲线与矩形的边交于点.
(1)求双曲线的解析式以及点的坐标;.
(2)若点是抛物线的顶点;
①当双曲线过点时,求顶点的坐标;
②直接写出当抛物线过点时,该抛物线与矩形公共点的个数以及此时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分;曲线BC是双曲线y=的一部分.由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2026,n)均在该抛物线上,则m+n=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发沿AB以3cm/s的速度向点B移动(不与点A,B重合);同时点Q从点C出发沿CD以2cm/s的速度向点D移动(不与点C、D重合),经过几秒,△PDQ为直角三角形?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com