【题目】如图,AB、BC、CD分别与⊙O相切于E、F、G三点,且AB∥CD,OB=6cm,OC=8cm.
(Ⅰ)求证:OB⊥OC;
(Ⅱ)求CG的长.
【答案】(Ⅰ)证明见解析 (Ⅱ)6.4cm
【解析】
(Ⅰ)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;
(Ⅱ)由勾股定理可求得BC的长,进而由切线长定理即可得到CG的长.
解:(Ⅰ)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴∠OBE+∠OCF=90°,
∴∠BOC=90°,
∴OB⊥OC;
(Ⅱ)由(Ⅰ)知,∠BOC=90°.
∵OB=6cm,OC=8cm,
∴由勾股定理得到:BC==10cm,
∴ 即
∴OF=4.8cm.
∴ =6.4cm,
∵CF、CG分别与⊙O相切于F、G,
∴CG=CF=6.4cm.
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.
(1)求证:∠CBP=∠ADB.
(2)若OA=2,AB=1,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.
(1)当点F与点A重合时,点G恰好到达点D,此时x= ,当EF⊥BC时,x= ;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;
(3)当S=15时,求此时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.
(1)求小芳抽到负数的概率;
(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,∠B=30°,AC=,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为( )
A.2B.3C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.
(1)求二次函数y=ax2+bx+c的表达式;
(2)若∠APO=90°,求点A的坐标;
(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:
①当m≠4时,试判断四边形OBCD的形状并说明理由;
②当n<0时,若四边形OBCD的面积为12,求点A的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C,D为上的点,且=,延长AD,BC相交于点E,连接OD交AC于点F.
(1)求证:△ABC≌△AEC;
(2)若OA=3,BC=4,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案所示图形是顶点在原点的抛物线的部分,方案二所示的图形是射线, 设推销员销售产品的数量为(件),付给推销员的月报酬为(元),
(1)请直接写出两种方案中关于的函数关系式:方案一: ,方案二: ;
(2)当销售量达到多少件时,两种方案的月报酬差额将达到元?
(3)若公司决定改进“方案二”:基本工资元,每销售件产品再增加报酬元,当推销员销售量达到件时,方案二的月报酬不低于方案一的月报酬,求的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com