【题目】如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.
(1)当点F与点A重合时,点G恰好到达点D,此时x= ,当EF⊥BC时,x= ;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;
(3)当S=15时,求此时x的值.
【答案】(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.
【解析】
(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;
(2)分两种情况:①当点F在AB上时,作GH⊥BC于H,则四边形ABHG是矩形,证明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面积公式和三角形面积公式即可得出答案;
②当点F在AD上时,作FM⊥BC于M,则FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面积公式和三角形面积公式即可得出答案;
(3)当x2+9x+12=15时,当x2﹣21x+102=15时,分别解方程即可.
(1)当点F与点A重合时,x=AB=6;
当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;
故答案为:6;10;
(2)∵四边形ABCD是矩形,
∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,
分两种情况:
①当点F在AB上时,如图1所示:
作GH⊥BC于H,
则四边形ABHG是矩形,
∴GH=AB=6,AG=BH,∠GHE=∠B=90°,
∴∠EGH+∠GEH=90°,
∵EG⊥EF,
∴∠FEB+∠GEH=90°,
∴∠FEB=∠EGH,
∴△EFB∽△GEH,
∴,即,
∴EH=x,
∴AG=BH=BE+EH=4+x,
∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,
即S=x2+9x+12(0<x≤6);
②当点F在AD上时,如图2所示:
作FM⊥BC于M,则FM=AB=6,AF=BM,
同①得:△EFM∽△GEC,
∴,即,
解得:GC=15﹣x,
∴DG=CD﹣CG=x﹣9,
∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,
∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积
=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102
即S=x2﹣21x+102(6<x≤10);
(3)当x2+9x+12=15时,
解得:x=﹣6±(负值舍去),
∴x=﹣6+;
当x2﹣21x+102=15时,
解得:x=14±(不合题意舍去);
∴当S=15时,此时x的值为﹣6+.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′ 的度数是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一块内置量角器的等腰直角三角板,它是一个轴对称图形.已知量角器所在的半圆O的直径DE与AB之间的距离为1,DE=4,AB=8,点N为半圆O上的一个动点,连结AN交半圆或直径DE于点M.
(1)当AN经过圆心O时,求AN的长;
(2)如图2,若N为量角器上表示刻度为90°的点,求△MON的周长;
(3)当时,求△MON的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).写出各点关于原点的对称点的坐标_____,_____,_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:
①4a+2b<0;
②﹣1≤a≤;
③对于任意实数m,a+b≥am2+bm总成立;
④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中结论正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com