精英家教网 > 初中数学 > 题目详情

【题目】如图1是一块内置量角器的等腰直角三角板,它是一个轴对称图形.已知量角器所在的半圆O的直径DEAB之间的距离为1DE4AB8,点N为半圆O上的一个动点,连结AN交半圆或直径DE于点M

1)当AN经过圆心O时,求AN的长;

2)如图2,若N为量角器上表示刻度为90°的点,求△MON的周长;

3)当时,求△MON的面积.

【答案】1AN+2;(2;(31

【解析】

(1)如图1中,连接FO延长FOABH.则FHABFHDE.解直角三角形求出AO即可解决问题.

(2)如图2中,连接OM,作OJMN.利用相似三角形的性质求出NJ,再利用垂径定理求出MN即可解决问题.

(3)分两种情形:如图31中,连接AO,延长AO交⊙OK,作OJMNJ,连接OMON.设AM=MN=xOJ=y,构建方程组即可解决问题.如图32中,连接ON,作NJABJDEK.想办法求出OMNK即可解决问题.

(1)如图1中,连接FO延长FOABH.则FHABFHDE

DE=4

∴⊙O的半径为2

FA=FBFHAB

AH=HB=4

中,OH=1AH=4

(2)如图2中,连接OM,作OJMNJ

中, AH=4

公共,

∴△OJN∽△AHN

,即

JN=

OJMNOM=ON

JM=JN

MN=2JN=

∴△MON的周长=2+2+=

(3)如图31中,连接AO并延长AO交⊙OK,作OJMNJ,连接OMON

AM=MN=

AM=MN=xOJ=y

OJMNOM=ON

JM=JN=

中,

,即①,

中, AO=

,即②,

联立①②并解得

OJ=

SMON=

如图32中,连接ON,作NJABJDEK

AM=MNMKAJ

MK的中位线,

NK=JK=OH=1MK= AJ

NJABDEAB

NKOE

sinNOK=

∴∠NOK=

OK=NK=

NJABFHABDEAB

∴四边形OKJH是矩形,

HJ=OK=

AJ= AH+ HJ =4+

MK=AJ=2+

OM=MKOK= 2+=2

SMON=(2)×1=1

综上所述,满足条件的△MON的面积为1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)如图所示,下列结论中:

①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).

其中正确的结论有(

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是⊙O的直径,AB为⊙O的弦,OPAD,OPAB的延长线交于点P,过B点的切线交OP于点C.

(1)求证:∠CBP=ADB.

(2)若OA=2,AB=1,求线段BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象分别交x轴、y轴于CD两点,交反比例函数图象于A4),B3m)两点.

(1)求直线CD的表达式;

(2)E是线段OD上一点,若,求E点的坐标;

(3)请你根据图象直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖.

方案一:转动转盘一次,指针落在红色区域可领取一份奖品;

方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品,你会选择哪个方案?请用相关的数学知识说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与x轴交于AB两点,A点在原点的左侧,抛物线的对称轴x1,与y轴交于C0,﹣3)点,点P是直线BC下方的抛物线上一动点.

1)求这个二次函数的解析式及AB点的坐标.

2)连接POPC,并把△POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形;若存在,请求出此时点P的坐标;若不存在,请说明理由.

3)当点P运动到什么位置时,四边形ABPC的面积最大;求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6BC13BE4,点F从点B出发,在折线段BAAD上运动,连接EF,当EFBC时停止运动,过点EEGEF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S

1)当点F与点A重合时,点G恰好到达点D,此时x   ,当EFBC时,x   

2)求S关于x的函数解析式,并直接写出自变量x的取值范围;

3)当S15时,求此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-34,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.

1)求小芳抽到负数的概率;

2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,点CD上的点,且,延长ADBC相交于点E,连接ODAC于点F

1)求证:△ABC≌△AEC

2)若OA3BC4,求AD的长.

查看答案和解析>>

同步练习册答案