【题目】如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是( )
A.abc<0B.4ac﹣b2>0
C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c
【答案】D
【解析】
由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2-4ac>0,求得4ac-b2<0,故B错误;根据对称轴方程得到b=2a,当x=-1时,y=a-b+c<0,于是得到c-a<0,故C错误;当x=-n2-2(n为实数)时,代入解析式得到y=ax2+bx+c=a(-n2-2)+b(-n2-2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.
解:由图象开口向上,可知a>0,
与y轴的交点在x轴的上方,可知c>0,
又对称轴方程为x=﹣1,所以﹣<0,所以b>0,
∴abc>0,故A错误;
∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,
∴b2﹣4ac>0,
∴4ac﹣b2<0,故B错误;
∵﹣=﹣1,
∴b=2a,
∵当x=﹣1时,y=a﹣b+c<0,
∴a﹣2a+c<0,
∴c﹣a<0,故C错误;
当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,
∵a>0,n2≥0,n2+2>0,
∴y=an2(n2+2)+c≥c,故D正确,
故选:D.
科目:初中数学 来源: 题型:
【题目】建筑工人用边长相等的正六边形、正方形、正三角形三种瓷砖铺设地面,正方形瓷砖分黑白两种颜色,密铺成图(1)的形状.用水泥浇筑前,为方便施工,工人要先把瓷砖按图1方式先摆放好,一工人摆放时,无意间将3块黑色正方形瓷砖上翻到一个正六边形的上面,其中三个正方形的一条边分别和正六边形的三条边重合,如图(2)所示.按图(2)方式给各点作上标注,若正方形的边长,则_____(不考虑瓷砖的厚度)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子里装有4个小球,分别标有1,2,3,7四个数字,这些小球除所标数字不同外,其余方面完全相同,甲、乙两人每次同时从袋子中各随机摸出一个小球,记下小球上的数字,并计算它们的和.
(1)请用画树状图或列表的方法,求两数和是8的概率;
(2)甲、乙两人想用这种方法做游戏,他们规定:若两数之和是2的倍数时,甲得3分;若两数之和是3的倍数时,乙得2分;当两数之和是其他数值时,两人均不得分.你认为这个游戏公平吗?请说明理由;若你认为不公平,请你修改得分规则,使游戏公平。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).
(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.
(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂长可绕点旋转,摆动臂可绕点旋转,,.
(1)在旋转过程中:
①当三点在同一直线上时,求的长;
②当三点在同一直角三角形的顶点时,求的长.
(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,连结,如图2,此时,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的弦,点C是弧AB的中点,D是弦AB上一动点,且不与A、B重合,CD的延长线交于⊙O点E,连接AE、BE,过点A作AF⊥BC,垂足为F,∠ABC=30°.
(1)求证:AF是⊙O的切线;
(2)若BC=6,CD=3,则DE的长为 ;
(3)当点D在弦AB上运动时,的值是否发生变化?如果变化,请写出其变化范围;如果不变,请求出其值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com