【题目】如图,已知AB是⊙O的弦,点C是弧AB的中点,D是弦AB上一动点,且不与A、B重合,CD的延长线交于⊙O点E,连接AE、BE,过点A作AF⊥BC,垂足为F,∠ABC=30°.
(1)求证:AF是⊙O的切线;
(2)若BC=6,CD=3,则DE的长为 ;
(3)当点D在弦AB上运动时,的值是否发生变化?如果变化,请写出其变化范围;如果不变,请求出其值.
【答案】(1)见解析;(2)9;(3)不变,
【解析】
(1)如图1中,连接AC,OC,OA.想办法证明OA∥BF即可解决问题;
(2)证明△BCD∽△ECB,推出,求出CE即可解决问题;
(3)如图2中,连接AC,OC,OC交AB于H,作AN∥EC交BE的延长线于N.证明△ACE∽△ABN,推出可得结论.
(1)证明:如图1中,连接AC,OC,OA,
∵∠AOC=2∠ABC=60°,OA=OC,
∴△AOC是等边三角形,
∴∠CAO=60°,
∵,
∴AB⊥OC,
∴∠OAD=∠OAC=30°,
∵∠ABC=30°,
∴∠ABC=∠OAD,
∴OA∥BF,
∵AF⊥BF,
∴OA⊥AF,
∴AF是⊙O的切线;
(2)解:∵,
∴∠CBD=∠BEC,
∵∠BCD=∠BCE,
∴△BCD∽△ECB,
∴,
∴,
∴EC=12,
∴DE=EC﹣CD=12﹣3=9,
故答案为:9;
(3)解:结论:=,的值不变.
理由:如图2中,连接AC,OC,OC交AB于H,作AN∥EC交BE的延长线于N.
∵,
∴OC⊥AB,CB=CA,
∴BH=AH=AB,
∵∠ABC=30°,
∴BH=BC,
∴AC=AB,
∵CE∥AN,
∴∠N=∠CEB=30°,∠EAN=∠AEC=∠ABC=30°,
∴∠CEA=∠ABC=30°,∠EAN=∠N,
∴∠N=∠AEC,AE=EN,
∵∠ACE=∠ABN,
∴△ACE∽△ABN,
∴=,
∴=,
∴的值不变.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是( )
A.abc<0B.4ac﹣b2>0
C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,、分别为、的中点,连接,交于点,将沿对折,得到,延长交延长线于点,下列4个结论:①;②;③;④;正确的结论有__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新学期复学后,学校为了保障学生的出行安全,随机调查了部分学生的上学方式(每位学生从乘私家车、坐公交、骑车和步行4种方式中限选1项),根据调查数据制作了如图所示的不完整的统计表和扇形统计图.
(1)本次学校共调查了 名学生, , ;
(2)求扇形统计图中“步行”对应扇形的圆心角;
(3)甲、乙两位同学住在同一小区,且都坐公交车上学,有、、三路公交车途径该小区和学校,假设甲、乙两位同学坐这三路公交车是等可能的,请用列表或画树状图的方法求某日甲、乙两位同学坐同一路公交车到学校的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=30°,点A1在ON上,点C1在OM上,OA1=A1C1=2,C1B1⊥ON于点B1,以A1B1和B1C1为邻边作矩形A1B1C1D1,点A1,A2关于点B对称,A2C2∥A1C1交OM于点C2,C2B2⊥ON于点B2,以A2B2和B2C2为邻边作矩形A2B2C2D2,连接D1D2,点A2,A3关于点B2对称,A3C3∥A2C2交OM于点C3,C3B3⊥ON于点B3,以A3B3和B3C3为邻边作矩形A3B3C3D3,连接D2D3,……依此规律继续下去,则DnDn+1=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.
(1)求证:PE是⊙O的切线;
(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;
(3)若tan∠P=,试求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区计划对1200m2的区域进行绿化,经投标由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且甲、乙两队在分别独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.
⑴ 甲、乙两施工队每天分别能完成绿化的面积是多少?
⑵ 设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y关于x的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com