如图,
是
的直径,
是
的中点,
的切线
交
的延长线于点
,
是
的中点,
的延长线交切线
于点
,
交
于点
,连接
.
(1)求证:
;
(2)若
,求
的长.
![]()
(1)证明见解析
(2)![]()
【解析】
试题分析:(1)连接OC,若要证明C为AD的中点,只需证OC//BD,已知C是
的中点,可知OC⊥AB,又BD是切线,可知BD⊥AB,问题得证
(2)由(1)及E为OB中点可知△COE≌△FBE,从而可知BF=CO=BO=2,由勾股定理可得AF的长,由面积法即可求出BH的长
试题解析:(1)连接OC
∵C是
的中点,AB是⊙O的直径
∴OC⊥AB
∵BD是⊙O的切线
∴BD⊥AB
∴OC//BD
∵AO=BO
∴AC=CD
(2)∵E是OB的中点
∴OE=BE
在△COE和△FBE中
∴△COE≌△FBE(ASA)
∴BF=CO
∵OB=2
∴BF=2
∴AF=![]()
∵AB是直径
∴BH⊥AF
考点:1、平行线分线段成比例定理;2、切线的性质;3勾股定理;4、全等三角形
科目:初中数学 来源:2014年初中毕业升学考试(四川南充卷)数学(解析版) 题型:填空题
一组数据按从小到大的顺序排列为1,2,3,
,4,5,若这组数据的中位数为3,则这组数据的方差是__________.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(吉林卷)数学(解析版) 题型:解答题
如图①,直线l:y=mx+n(m>0,n<0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.
(1)若l:y=﹣2x+2,则P表示的函数解析式为 ;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为 .
(2)求P的对称轴(用含m,n的代数式表示);
(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=
,直接写出l,P表示的函数解析式.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古包头、乌兰察布卷)数学(解析版) 题型:选择题
下列计算正确的是( )
A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com