精英家教网 > 初中数学 > 题目详情

【题目】现定义新运算“△”,对于任意有理数a,b,都有a△b=a2-ab+b,例如:3△5=32-3×5+5=-1,请根据上述知识解决问题:

(1)化简:(x-1)△(2+x);

(2)若(1)中的代数式的值大于6而小于9,求x的取值范围.

【答案】(1) -2x+5;(2) -2<x<-.

【解析】

(1)根据题意得出原式=(x-1)2-(x-1)(2+x)+(2+x),化简即可;

(2)根据题意得出不等式组,求出不等式组的解集即可.

(1)(x-1)(2+x),

=(x-1)2-(x-1)(2+x)+(2+x),

=x2-2x+1-2x-x2+2+x+2+x,

=-2x+5;

(2)由题意得不等式组

解不等式①得,x<-

解不等式②得,x>-2,

所以x的取值范围是-2<x<-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.
(1)先从袋中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:若A为必然事件,则m的值为 , 若A为随机事件,则m的取值为
(2)若从袋中随机摸出2个球,正好红球、黑球各1个,求这个事件的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算.

1|3|﹣(2+0

2)(﹣3m2n2(﹣2m2÷6mn2

32xxy)﹣(x+2y)(xy

4[x2y2xx4y)﹣8xy]÷4y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,C点的坐标为______________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,AB=AC,BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.试探索BF与CF的数量关系,写出你的结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四幅图像分别表示变量之间的关系,请按图像的顺序,将下面的四种情境与之对应排序.

a.运动员推出去的铅球(铅球的高度与时间的关系)

b.静止的小车从光滑的斜面滑下(小车的速度与时间的关系)

c.一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系)

d.小明从A地到B地后,停留一段时间,然后按原来的速度原路返回(小明离A地的距离与时间的关系)

正确的顺序是(  )

A. abcd B. abdc C. acbd D. acdb

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为 的线段的概率为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.

(1)求渔船从B到A的航行过程中与码头M之间的最小距离.
(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.

查看答案和解析>>

同步练习册答案