精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,C点的坐标为______________________________.

【答案】(3,4)(1,-2)(-1,2)

【解析】

由平行四边形的性质:平行四边形的对边平行且相等,即可求得点C的坐标;注意三种情况.

如图所示:

∵以OABC为顶点的四边形是平行四边形,O00),A13),B20),
∴三种情况:
①当AB为对角线时,点C的坐标为(34);
②当OB为对角线时,点C的坐标为(1-2);
③当OA为对角线时,点C的坐标为(-12);
故答案是:(34)或(1-2)或(-12).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )

A.a>0
B.3是方程ax2+bx+c=0的一个根
C.a+b+c=0
D.当x<1时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DEFABC经过平移得到的.已知A=54°ABC=36°,则下列结论不一定成立的是(  )

A. F=90° B. BED=∠FED C. BCDF D. DFAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:

1)甲、乙两组工作一天,商店各应付多少钱?

2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?

3)装修完毕第二天即可正常营业,且每天仍可盈利200(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1 , 正八边形外侧八个扇形(阴影部分)面积之和为S2 , 则 =( )

A.
B.
C.
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现定义新运算“△”,对于任意有理数a,b,都有a△b=a2-ab+b,例如:3△5=32-3×5+5=-1,请根据上述知识解决问题:

(1)化简:(x-1)△(2+x);

(2)若(1)中的代数式的值大于6而小于9,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= . (结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至于30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;
(2)若建成后的寝室可供600人住宿,求单人间的数量;
(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?

查看答案和解析>>

同步练习册答案