精英家教网 > 初中数学 > 题目详情

【题目】一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:

1)甲、乙两组工作一天,商店各应付多少钱?

2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?

3)装修完毕第二天即可正常营业,且每天仍可盈利200(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)

【答案】1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组所需费用最少;(3)商店请甲乙两组同时装修,才更有利,理由见解析.

【解析】

1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于xy的二元一次方程组,解之即可得出结论;

2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;

3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.

1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,

根据题意得:

解得:

答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.

2)单独请甲组所需费用为:300×12=3600()

单独请乙组所需费用为:140×24=3360()

36003360

∴单独请乙组所需费用最少.

3)商店请甲乙两组同时装修,才更有利.理由如下:

单独请甲组完成,损失钱数为:200×12+3600=6000()

单独请乙组完成,损失钱数为:200×24+3360=8160()

请甲乙两组同时完成,损失钱数为:200×8+3520=5120()

816060005120

∴商店请甲乙两组同时装修,才更有利.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状(

A. 直角三角形 B. 等腰三角形 C. 锐角三角形 D. 钝角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在5×5的方格纸中,每一个小正方形的边长都为1.

(1)BCD是不是直角?请说明理由;

(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠B=45°,点D在边BC上,AD=AC,点E在边AD上,∠BCE=45°,若AB=5 .AE=2DE,则AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算.

1|3|﹣(2+0

2)(﹣3m2n2(﹣2m2÷6mn2

32xxy)﹣(x+2y)(xy

4[x2y2xx4y)﹣8xy]÷4y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,C点的坐标为______________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四幅图像分别表示变量之间的关系,请按图像的顺序,将下面的四种情境与之对应排序.

a.运动员推出去的铅球(铅球的高度与时间的关系)

b.静止的小车从光滑的斜面滑下(小车的速度与时间的关系)

c.一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系)

d.小明从A地到B地后,停留一段时间,然后按原来的速度原路返回(小明离A地的距离与时间的关系)

正确的顺序是(  )

A. abcd B. abdc C. acbd D. acdb

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为( )
A.1
B.
C.
D.

查看答案和解析>>

同步练习册答案