精英家教网 > 初中数学 > 题目详情

【题目】关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是(
A.m<
B.m> 且m≠2
C.m≤
D.m≥ 且m≠2

【答案】B
【解析】解:∵关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根, ∴△=b2﹣4ac>0,即(2m+1)2﹣4×(m﹣2)2×1>0,
解这个不等式得,m>
又∵二次项系数是(m﹣2)2
∴m≠2,
故M得取值范围是m> 且m≠2.
故选B.
本题是根的判别式的应用,因为关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,所以△=b2﹣4ac>0,从而可以列出关于m的不等式,求解即可,还要考虑二次项的系数不能为0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:四条边都相等且四个角都是直角的四边形叫做正方形。我校快乐走班数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.

(1)求证:DP=DQ;

(2)如图②,小明在图1的基础上作∠PDQ的平分线DEBC于点E,连接PE,他发现PEQE存在一定的数量关系,请猜测他的结论并予以证明;

(3)如图③,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DEBC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出DEP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CE、BE的交点为E,现作如下操作:

第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1

第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2

第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,

n次操作,分别作∠ABEn1和∠DCEn1的平分线,交点为En.

(1)如图①,求证:∠BEC=ABE+DCE;

(2)如图②,求证:∠BE2C=BEC;

(3)猜想:若∠En度,那∠BEC等于多少度?(直接写出结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于点E,CG⊥AD于点G,连接FE,FC.
(1)求证:GC是⊙F的切线;
(2)填空: ①若∠BAD=45°,AB=2 ,则△CDG的面积为
②当∠GCD的度数为时,四边形EFCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.

(1)求点D的坐标(用含m的代数式表示);

(2)当△APD是以AP为腰的等腰三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L1过A(0,2),B(2,0)两点,直线L2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,设此三角形的面积为S,求S关于m的函数解析式,及自变量m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是边长为2的等边三角形,边AO在y轴上,点B1 , B2 , B3 , …都在直线y= x上,则A2017的坐标为( )

A.2015 ,2017
B.2016 ,2018
C.2017 ,2019
D.2017 ,2017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,A(1,a)、B(b,1),其中ab满足+(ab-7)2=0.

(1) ab的值

(2) 平移线段ABCD,其中AB的对应点分别为CD,若D的坐标为(0,n)且n<0,若四边形ABDC的面积为20,求D的坐标

(3)在(2)的条件下,将线段AB绕点A以每秒80的速度顺时针旋转,同时线段CD绕点D以每秒20的速度顺时针旋转(当AB旋转到一周时两线段同时停止旋转),设运动时间为t秒,当t为何值时,直线AB与直线CD的夹角为600?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC=5,BC=6,点D是BC上的一点,那么点D到AB与AC的距离的和为(  )
A.5
B.6
C.4
D.

查看答案和解析>>

同步练习册答案