精英家教网 > 初中数学 > 题目详情

【题目】定义:四条边都相等且四个角都是直角的四边形叫做正方形。我校快乐走班数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.

(1)求证:DP=DQ;

(2)如图②,小明在图1的基础上作∠PDQ的平分线DEBC于点E,连接PE,他发现PEQE存在一定的数量关系,请猜测他的结论并予以证明;

(3)如图③,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DEBC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出DEP的面积.

【答案】 (1)证明见解析;(2)猜测:PE=QE.证明见解析; (3)SDEP =

【解析】试题分析:本题是一道几何证明题,主要考查了正方形的性质、全等三角形的性质与判定、勾股定理等知识点,试题难度不大,但要注意第(3)题中认真计算,避免出错.

求证DPDQ;只需证明△ADP≌△CDQ即可得到DPDQ.解题的关键是找出∠PDC的两个余角相等即∠ADP ∠CDQ,两三角形全等的条件就具备了.

PEQE.只需证明△PDE≌△QDE即可得到,由(1)的结论DPDQ加上DE∠PDQ的平分线易用SAS证得结论.

3)由AB:AP3:4AB6可求AP8,BP2;直接由(1)和(2)的结论APCQPEQECEx,则PE=8-x,利用勾股定理求得Rt△PEB的边PE,由此可得EQ的长度,这样△DEP的面积就不难求得了.

试题解析:

1)证明:四边形ABCD是正方形

∴DADC∠DAP∠DCQ90°

∵∠PDQ90°

∴∠ADP+∠PDC90°

∠CDQ+∠PDC90°

∠ADP∠CDQ

△ADP△CDQ

∴△ADP≌△CDQ(ASA)

∴DPDQ

2)解:PEQE.证明如下:

∵ DE∠PDQ的平分线

∴∠PDE∠QDE

△PDE△QDE

∴△PDE≌△QDE(SAS)

∴PEQE

3)解:∵AB:AP3:4AB6

∴AP8,BP2,

由(1)知:△ADP≌△CDQ APCQ8

由(2)知:△PDE≌△QDEPEQE

CEx,则PEQECQ-CE8-x

Rt△PEB中,BP2,BE6xPE8-x

由勾股定理得:22+(6x2=(8-x2

解得:x

∴△DEP的面积为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°EF⊥AB,垂足为F,连接DF

1)试说明AC=EF

2)求证:四边形ADFE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坡顶B处的同一水平面上有一座纪念碑CD垂直于水平面,小明在斜坡底A处测得该纪念碑顶部D的仰角为45°,然后他沿着坡比i=5:12的斜坡AB攀行了39米到达坡顶,在坡顶B处又测得该纪念碑顶部的仰角为68°.求坡顶B到地面AE的距离和纪念碑CD的高度.(结果精确到1米,参考数据:sin68°=0.9,cos68°=0.4,tan68°=2.5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC三点的坐标分别为(0a)(b0)、(bc),其中abc满足关系式(3a2b)20,|c4|0

⑴求abc的值;

⑵如果在第二象限内有一点P(m11),请用含m的代数式表示△AOP的面积;

⑶在⑵的条件下,m在什么范围取值时,△AOP的面积不大于△ABC的面积?请求出在符合条件的前提下、△AOP的面积最大时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.

根据图中信息,回答下列问题:

(1)甲的平均数是___________,乙的中位数是______________;

(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小东根据学习函数的经验,对函数y= 的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= 的自变量x的取值范围是
(2)表格是y与x的几组对应值.

x

﹣2

﹣1

0

1

2

3

4

y

2

4

2

m

表中m的值为
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数y= 的大致图象;

(4)结合函数图象,请写出函数y= 的一条性质:
(5)如果方程 =a有2个解,那么a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据解答过程填空:

如图,已知 ,那么AB与DC平行吗?

解: 已知

________ ________________

_______

________

________ 等量代换

________ )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1∥l2,直线l3和直线l1l2交于点CD,在直线CD上有一点P

1)如果P点在CD之间运动时,问∠PAC∠APB∠PBD有怎样的数量关系?请说明理由.

2)若点PCD两点的外侧运动时(P点与点CD不重合),试探索∠PAC∠APB∠PBD之间的关系又是如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是(
A.m<
B.m> 且m≠2
C.m≤
D.m≥ 且m≠2

查看答案和解析>>

同步练习册答案