精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将ABE向上翻折,点A正好落在CD上的点F处,若FDE的周长为12FCB的周长为28,则FC的长为_____

【答案】8

【解析】

根据折叠的性质可得,EFAEBFBA,从而平行四边形的周长可以转化为△FDE的周长+△FCB的周长,求出ABBC,再由△FCB的周长28,即可求出FC的长.

由折叠的性质可得EFAEBFAB

∴平行四边形ABCD的周长

DFFCCBBAAEDE

=△FDE的周长+△FCB的周长

122840

∵四边形ABCD为平行四边形

ABBC20

∵△FCB的周长

CFBCBFCFBCAB28

FC2028

FC8

故答案为:8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将两个全等的直角三角尺ABCADE如图摆放,∠CAB=∠DAE90°,∠ACB=∠DEA30°,使点D落在BC边上,连结EBEC,则下列结论:DAC=∠DCAEDAC的垂直平分线;EB平分∠AEDACE为等边三角形.其中正确的是(  )

A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017甘肃省天水市)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q

1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE

2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2CQ=9BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图4所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,右面的一条抛物线的解析式为y=x2-4x+5表示,而且左右两条抛物线关于y轴对称,则左面钢缆的表达式为_________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%

1)该水果店主购进第一批这种水果每箱的单价是多少元?

2)该水果店主计划两批水果的售价均定为每千克4元,每箱10千克,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了2%的损耗,但这两批水果销售完后仍赚了不低于2346元,求a的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解方程

(1)x2-4x+1=0

(2)(2x+1)2=3(2x+1)

(3)(x+3)(x-6)=-8

(4)2x2-x-15=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016广东省深圳市)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)

(1)求桂味和糯米糍的售价分别是每千克多少元;

(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

同步练习册答案