精英家教网 > 初中数学 > 题目详情

【题目】如图,在O的内接四边形ABCD中,AB=ADC=120°,点E上.

1)求∠E的度数;

2)连接ODOE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.

【答案】(1)∠AED=120°;(212.

【解析】试题分析:

(1)如图,连接BD,由已知条件证△ABD是等边三角形,得到∠ABD=60°,从而由圆内接四边形的性质可得∠AED=120°;

2)如图,连接OA,由∠ABD=60°,可得∠AOD=120°,结合∠DOE=90°可得AOE=30°从而可得.

试题解析

1)如图,连接BD

∵四边形ABCD是⊙O的内接四边形,

∴∠BAD+C=180°

∵∠C=120°

∴∠BAD=60°

AB=AD

∴△ABD是等边三角形,

∴∠ABD=60°

∵四边形ABDE是⊙O的内接四边形,

∴∠AED+ABD=180°

∴∠AED=120°

2)连接OA

∵∠ABD=60°

∴∠AOD=2ABD=120°

∵∠DOE=90°

∴∠AOE=AOD﹣DOE=30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=3,BC=2,ACAD,∠ACD=60°,则对角线BD长的最大值为(  )

A. 5 B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O在边长为6的正方形ABCD的对角线AC上,以O为圆心OA为半径的⊙OAB于点E.

(1)⊙O过点E的切线与BC交于点F,当0<OA<6时,求∠BFE的度数;

(2)设⊙OAB的延长线交于点M,⊙O过点M的切线交BC的延长线于点N,当6<OA<12时,利用备用图作出图形,求∠BNM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,点Q坐标为(x,y),若过点Q的直线lx轴夹角为45°时,则称直线l为点Q的“湘依直线”.

(1)已知点A的坐标为(6,0),求点A的“湘依直线”表达式;

(2)已知点D的坐标为(0,﹣4),过点D的“湘依直线”图象经过第二、三、四象限,且与x轴交于C点,动点P在反比例函数y=(x>0)上,求△PCD面积的最小值及此时点P的坐标;

(3)已知点M的坐标为(0,2),经过点M且在第一、二、三象限的“湘依直线”与抛物线y=x2+(m﹣2)x+m+2相交与A(x1,y1),B(x2,y2)两点,若0≤x1≤2,0≤x2≤2,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB⊙O的切线.

2)已知AOO于点E,延长AOO于点DtanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析(2) (3)

【解析】试题分析:(1)过OOF⊥ABF,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥ABF

∵AO∠BAC的角平分线,∠ACB=90

∴OC=OF

∴AB⊙O的切线

2)连接CE

∵AO∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,设AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

考点:圆的综合题.

型】解答
束】
22

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段O、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;

(2)试说明在旋转过程中,线段AF与EC总保持相等;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠ACB90°,ACBCD是线段BC上一动点(不与点BC重合),连接AD,延长BC至点E,使得CECD,过点EEFAD于点F,再延长EFAB于点M

1)若DBC的中点,AB4,求AD的长;

2)求证:BMCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.

(1)试求∠AED的度数.

(2)若⊙O的半径为cm,试求△ADE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图市防汛指挥部决定对某水库的水坝进行加高加固设计师提供的方案是:水坝加高1(EF=1),背水坡AF的坡度i=11,已知AB=3ABE=120°,求水坝原来的高度

查看答案和解析>>

同步练习册答案